> Astro 210
> Lecture 7
> Sept. 11,2013

Announcements:

- PS 2 due Friday
- PS1 returned today-people did well!
- Office hours: today $1-2 p m$ or by appointment TA: tomorrow 1-2pm
- ASTR 401: abstracts due next Monday
- Learning names: Say cheese! identify yourself on Compass, earn easy bonus points

Last time: first look at the Milky Way
Today: exploring the Milky Way

- the observed Milky Way on the 2-D sky

Q: What is geometry of the sky as observed from Earth?

- our home Galaxy in 3-D space

The Observed Sky: Celestial Sphere

In reality: cosmic objects arranged in 3-D space But: can't directly tell distance to these objects no "sense of depth"
So observationally: the sky "flattened" into a 2-D surface \rightarrow we see the Galaxy and Universe in projection: "cosmic roadkill"
sky geometry: spherical
observations measure object direction $=$ angular coordinates on imaginary celestial sphere

- fixed, unmoving sphere of infinite radius
- centered on the Earth

Q: star paths during one night, seen from Chambana?

Milky Way: Overview and History

Galileo (1610): first telescope for astronomy revolutionized our view of the universe, e.g.

- Venus phases ruled out Earth-centered (geocentric) cosmology
- away from Milky Way discovered stars too faint for naked eye philosophical problem: what's the use of stars we can't see?
observing Milky Way's light:
Galileo saw it is made of stars
- huge numbers of stars
- very crowded on sky
- individually very faint
eye can't see MW stars individually, light blends together

MW band on 2-D sky is a great circle
Q: what's that?
Q: what does this mean for MW in 3-D space?

Circles of Greatness

great circle: largest possible circle on a sphere

Milky Way band makes great circle on projected 2-D sky i.e., largest possible circle on celestial sphere
but great circle is intersection of sphere and plane \rightarrow in 3-D, Milky Way stars are in flattened plane/disk
...and we live inside the disk!

the Sun lives inside the Milky Way disk

Milky Way Pioneers

Why a disk?
Immanuel Kant: gravity + spin (ang. mom.) \rightarrow disk diagram: collapse to disk

How big is it? Where in the disk do we live?
Sir William Herschel (~ 1780)
star counts \rightarrow geometric model
Q: how would you do this?
Q: what assumptions needed?
www: Herschel universe

Herschel universe:

- Milky Way brightness roughly uniform around sky
- assuming no stars are hidden \rightarrow we are nearly at center!

John Dreyer 1888:
New General Catalogue (NGC) of nebulae.
almost no nebulae within $\pm 15^{\circ}$ of Galactic plane
"zone of avoidance"
www: zone of avoidance

Jacobus Kapteyn 1920's: photographic survey of MW
model: Kapteyn's universe
galaxy size ~ 1000 pc $=1 \mathrm{kpc}$
assumption: stars unobscured: interstellar space empty
but if interstellar matter, starlight can be scattered or absorbed
www: sunset
Q: what would this mean for the survey?

Experimentum Crucis

Harlow Shapley 1910's:
used globular clusters of $10^{4}-10^{6}$ stars
www: globular cluster
globular clusters appear all over sky
most lie out of disk plane \rightarrow we have unobscured view

Q: how does sky pattern of GC's tell where we are?
center of globular cluster swarm should be MW disk center Q: why? what if off-center? How would they move?

If we are at MW center:
\rightarrow should see GC's evenly spread around the sky: "isotropic"

If we are off-center:
\rightarrow should see GC's more on one side of sky: "anisotropic"
\rightarrow that's Galactic "downtown"
www: Shapley's observed GC sky distribution (1918)

* we are not at the Milky Way center!
$\infty \quad Q$: How reconcile with off-center location with star counts?

Strange Things are Afoot at the Circle K

dark bands in MW, zone of avoidance: absorbing medium?
www: MW optical
www: MW zoom

E. E. Barnard (1907, 1910)

noted "vacancy" on the sky, now called "dark clouds"
www: Barnard's images; modern images of dark clouds
"It almost seems to me that we are here brought face to face with a phenomenon that may not be explained with our present ideas of the general make-up of the heavens." -Barnard 1907

Playing the Trump Card

R. J. Trumpler (1930)
studied open star clusters (bright, newborn stars)
www: open cluster
compared open cluster distances measured two ways
angular diameter distance

- assume: all same physical size R
- measure angular size θ on sky geometry says $\theta=r / d$

\Rightarrow solve for distance $d_{A}=R / \theta$

luminosity distance

- assume star luminosities similar from cluster to cluster i.e., use cluster stars as standard candles: same L
- measure flux F, use inverse square law
\Rightarrow solve for distance $d_{L}=\sqrt{L / 4 \pi F}$

iClicker: Absorb This!

Imagine an absorbing medium is spread over interstellar space measure both $d_{L}=\sqrt{L / 4 \pi F}$ and $d_{A}=R / \theta$
What trends should we find?

A $\quad d_{L} \leq d_{A}$, and d_{L} is true distance

B $\quad d_{L} \geq d_{A}$, and d_{L} is true distance

C $d_{L} \leq d_{A}$, and d_{A} is true distance

D $\quad d_{L} \geq d_{A}$, and d_{A} is true distance
$\stackrel{\square}{\square} d_{L}=d_{A}$, but neither is true distance
www: Trumpler's data

Trumpler found that for distant clusters, $d_{L}>d_{A}$
luminosity distance larger than angular diameter distance
also found stellar colors increasingly red with larger distance
Q: possible explanations? implications?

Discovery of the Interstellar Medium

Trumpler: F too small \rightarrow starlight absorbed
\rightarrow interstellar matter exists
interstellar matter mostly gas, but about 1% of mass is dust www: stardust
microscopic $r \sim 1 \mu=1000 \mathrm{~nm}$
strongly absorbs light with $\lambda \sim r$
\rightarrow visible, some IR blocked- "in fog"
but more transparent when $\lambda \gg r$ and $\lambda \ll r$
e.g., radio, γ-ray

Also note:
absorption \rightarrow more to picture than meets eye
$\stackrel{\oplus}{\omega}$
\rightarrow scale of MW goes up!
\rightarrow Hershel confused by "fog" of dust: we are not at the center!

Celestial Sphere: Coordinate Systems

points on the sky specified by 2 coordinates on celestial sphere points in $3-\mathrm{D}$ space need distance as well

Equatorial Coordinates: based on Earth spin \vec{S} northe celestial pole $=$ direction of \vec{S}
points: $\mathrm{RA}=\alpha$, $\mathrm{dec}=\delta$
www: S\&G equatorial coordinate diagram

Q: why is this system useful?
Q: why is this system inconvenient for Galactic studies?
Q: what would be a better choice?

