Astronomy 596/496 APA Lecture 10 Nov. 5, 2015

Today's Agenda

- ★ What did I miss last time?
- ★ Colloquium Recap
- ★ Order of Magnitude: Buckingham Pi
- ★ Colloquium Preview

Week after next: All-Department workshop on fostering a climate of respect

No homework was due today. Hope that's okay. There will be some for next week. this past Tuesday: Josh Frieman

• "Probing the Dark Universe with the Dark Energy Survey"

Q: What was the talk about?

Q: Key/memorable results?

Q: What did you like about the presentation?

Q: Lingering questions?

Q: Other comments?

Buckingham Pi Theorem

Simpleminded Example Becomes More Complex

last time:

- uniform (Newtonian) gravity field g
- particle released *from rest*
- falls height h in time t
- Q: unique dimensionless grouping?

now:

4

- particle released with initial speed v_0
 - \rightarrow new dimensionful parameter
 - Q: any new fundamental units?

Notice: two constants g and v_0

- can construct characteristic fundamental scale(s)
 Q: namely? physical significance?
- dimensionless group(s) Q: namely? we want $h = f(t, g, v_0)$: Q: how to proceed?

Multiple Dimensionless Groups: Physics to the Rescue

New characteristic scales:

- time $t_{acc} = v_0/g$: timescale for acceleration to v_0
- length $h_{acc} = v_0 t_{acc} = v_0^2/g$: lengthscale for acceleration to v_0

Before: found dimensionless group $\theta_1 = gt^2/h$ physics only depends on this: some $F(\theta_1) = const$ in fact, good results with $F(\theta) = \theta$ Now: one new group possible, e.g., $\theta_2 = v_0 t/h$ must find $F(\theta_1, \theta_2) = const$ \rightarrow need physical insight to proceed

use characteristic scales:

^o *Q*: expected behavior for $t/t_{acc} \ll 1$? $t/t_{acc} \gg 1$? *Q*: implications for *F*? e.g., why not *F* ~ $θ_1 θ_2$? Short timescales $t/t_{acc} \ll 1$:

- acceleration hasn't changed speed much
- \bullet problem reduces to $h,\ t,\ v_{\rm 0}$

$$\Rightarrow F = F(\theta_2) \text{ only } \rightarrow h \sim v_0 t$$

Long timescales: $t/t_{acc} \gg 1$:

• acceleration overwhelms v_0 problem reduces to h, t, g $\Rightarrow F = F(\theta_1) \text{ only } \rightarrow h \sim gt^2$

Full $F(\theta_1, \theta_2)$ must include these limits $F \sim \theta_1 \theta_2 \rightarrow 0$ if g = 0 or $v_0 = 0!$ illegal! \Rightarrow simplest legal choice: linear combo $F \sim \theta_1 + \theta_2$ $h \sim v_0 t + gt^2!$

Counting Dimensionless Groups

The Buckingham Pi Theorem (Buckingham 1914, 1915) In your problem identify:

- the number of physical variables
- the number of independent fundamental **units** $\in [M, L, T]$

Theorem:

of dimensionless groups = # of variables – # of units

Example:

- h, t, g problem: variables = 3, units = 2 \rightarrow groups = 1 check!
- h, t, g, v_0 problem: variables = 4, units = 2 \rightarrow groups = 2 *check*!

 $\overline{}$

Q: What if you get # groups ≤ 0 ?

Colloquium Preview

Next week, Nov. 10: Enrico Ramirez-Ruiz, UC Santa Cruz "Heavy element synthesis in the Universe""

Q: Which elements are "heavy?" What is "metallicity?"

Here: heavy = heavier than iron. Q: Why is iron special from the nuclear point of view? www: The Great Curve Q: Where does iron come from astrophysically?

Q: Why is it hard to make elements heavier than iron?
www: The Other Great Curve
Q: How does nature do this? What ingredients needed?
www: Chart of Nuclides Q: seen this before?
Q: Where might this happen in nature?

 ∞