Astronomy 596/496 APA Lecture 1 Aug. 25, 2016

Announcements:

- Welcome!
- Pick up Syllabus
- Homework 1 due on Compass by start of class next time, Sept. 1

Today's Agenda

 \star Introductions

 \vdash

- \star Motivation and Preview
- \star Introduction to the Art of Estimation
- ★ Colloquium Preview

Introductions

Motivation and Preview

Why this course?

You are here to learn how to become researchers: astronomers, astrophysicists, cosmologists

We want to get you up to speed, and prepare you for the next steps

Formal courses expose you to data, theories, formalism, analytical tools \rightarrow all crucial for research

But to live long and prosper in the *art* and *practice* of astronomy involves much more:

- science: unwritten/informal research tools
 - "sociology": unwritten expectations, opportunities, challenges

We want Illinois students to have every advantage when you go forth into the wide world of astro-research

...and so...

this is our attempt to give you an "unfair advantage" ...

ASTR 596/496 APA: The Facts of Astrophysical Life

Everything you ever wanted to know but were (maybe) afraid to ask

Goals

- ★ learn how to live, thrive, and survive in astronomy/astrophysics/cosmology
- \star become familiar with unwritten rules, tools, and expectations
- ★ gain awareness of career paths, milestones, opportunities, challenges

Strategy

σ

 \star learn by doing

- \triangleright order-of-magnitude estimation
- ▷ map out career milestones, key documents
- \star knowledge is power
 - ▷ estimation skills drive research, impress colleagues/employers
 - career information allows decisions and planning

The Bargain

This course is unusual: it is

experimental, informal, and interactive

⇒ successful experiments require dedicated and patient experimentalists: all of us!

Instructors we will

- give unvarnished truth as we see it,
- be respectful of your participation
- be responsive to your interests, questions, and suggestions

Students you should *own* this course

 participate and be interactive attention and engagement are essential; correct answers aren't

• respect others and their contributions

7

Course Structure

Your time—in class and in homework—will be divided roughly equally between

★ Order-of-Magnitude Estimation

and

 \star Career Paths and Research Skills

 \odot

The Purpose of Graduate School

Q: what is the main purpose of graduate school?

Q: what observable evidence shows progress towards this goal?

The Purpose of Graduate School: Research

- A graduate degree is training to do research
- research requires a wide skill set
- we don't expect you to have all of these skills yet
- look for opportunities to develop, practice, master these skills

Observable evidence = Research Output

\star Refereed Publications with you as first author!

• talks you give about your research

Benefits flow from publication:

- fellowships, talk invites, postdocs, observing/computer time
- and cash! Astro Dept rewards grad 1st-author pubs with \$100

10

Thus: Plan grad career around writing papers

Career Paths: Surveying the Phase Space

a degree in Astronomy/Astrophysics is

 \star valued

 \star versatile

Astrophysicists are in a wide array of careers Profs at Illinois: academia, reasearch-1 university

full phase space is much larger!

To give a broader idea of possibilities: Guest Speakers: Illinois Grad and Undergrad alums

- once literally sat in your chairs
- can tell you how they got where they are
- [±] anticipated or confirmed speakers: aerospace, data science, national labs, other?

Introduction to the Art of Estimation

Why estimation?

You've taken many courses and spent a lot of time learning complex and powerful tools for precise calculations You've heard about "precision cosmology"

Isn't this course a step backwards? Maybe: *Those who can't calculate, they approximate!*

After all you've done to do things the hard way and the precise way

Q: why learn to make rough, imprecise approximations?

Approximation is Real Science

the real world is subtle and rich (\equiv complicated) physics/astro phenomena elaborately detailed, but not all details equally important

no real-world system *ever* simple enough to calculate without *any* approximation and even if you could, complicated result hides insight

faced with a new problem: simplify!

... but keep the essentials

approximations and estimates help you

- to see what is relevant
- to see what is irrelevant
- \overline{G} to test ideas/hunches quickly
 - \star identify which detailed calculation(s) are worth doing

Fermi Problems

Enrico Fermi famous for his estimation skills "Fermi problems" – rough calculations to get insight famous/notorious legend: paper scraps at Trinity test

Fermi Canonical Example

Estimate the number of piano tuners in Chicago

Modern Example

Estimate how many people are airborne over the US at any moment

6 Credit: *Guesstimation*, L. Weinstein and J.A. Adam, 2008, Princeton U. Press, pp 51–54

Fermi Problems

Estimate the number of people in midair.

The Game

- make educated/uneducated guesses
- estimate answer as well as uncertainty in answer
- **no peeking!** don't look up any numbers until checking answers

Strategies

more than one way to approach this *Q: think of at least two!*

Midair Populatin

Strategy 1: Guess

to within an order of magnitude, what smells right? i.e., for $N_{\text{midair}} \sim 10^x$, guess xand if x = n seems low, and x = n + 1 seems high, try x = n + 1/2, i.e., $10^{n+1/2} \approx 3 \times 10^n$ $N_{\text{pizza}}^{\text{Chi}} \sim 1$, 3, 10, 30, 100, ...?

Q: your guess?

Notation for Approximation:

- $a \propto b$: proportionality (units differ)
- $a \sim b$: good to within about 10¹ (units same)
- $a \simeq b$: good to within about a factor 2 (units same)

```
Note: not a sharp division between the last two, and
```

people sometimes use other conventions

18

Midair Population

Strategy 2: Divide and Conquer

break big problem into small pieces you know how to solve

e.g., maybe begin with: what is the US population?

Note:

- more than one way to do this
- each factor has uncertainties, but if you are honest overestimates might cancel underestimates
- famous example: Drake equation

Q: procedures?

19

Q: expected accuracy of answer?

Midair Population: Reality Check

Check your answer!

Q: What's the best way to do this with the internet?

Compare real vs estimated answer and accuracy

Q: What lessons do we draw?

Colloquia

You should go!

Q: Why?

Q: *Why is it hard at first?*

Colloquium Preview

Astrophysics Colloquium: Tuesdays, Here, 3:45-4:45

Next week, Sept. 1

- Roubing Dong, UC Berkeley, Hubble Fellow
- "Observational Planet Formation A Brand New Field in Astronomy"
- *Q: Hubble Fellow?*
- *Q:* How are planets formed? What observations are relevant?