Astronomy 596/496 APA
 Lecture 4
 Sept. 15, 2016

Today's Agenda

* Guest Lecture \& Colloquium Recap
* Order of Magnitude

Buckingham Pi theorem

* Colloquium Preview

No HW was due today! But there is some next week!

Looking ahead:

- Sept. 22: Special Lecture on NASA/Kelper
- Sept. 29: Guest speaker from JPL
this past Tuesday: Xuening Bai
"The microphysics of astrophysics: adventures in computational magnetohydrodynamics"

Q: What was the talk about?

Q: Key/memorable results?

Q: What did you like about the presentation?

Q: Lingering questions?

Q: Other comments?

Dimensional Analysis: The Estimator's Workhorse

physical quantities have dimensions (units)
all units can ultimately be expressed in terms of
three fundamental dimensions (units)

- [length] $\equiv[L]$
- [time] $\equiv[T]$, and
- [mass] $\equiv[M]$
of course, some measurable physical quantities are dimensionless Q : example?

Profound but seemingly innocent observation I:
the behavior of a physical system is independent of the units used to describe it

Profound but seemingly innocent observation II:
in any expression (equation) describing a physical system each term must have the same units
i.e., physical equations must be dimensionally homogeneous

Dimensional Analysis Illustrated

Consider

- a Newtonian particle in a uniform gravity field g
- released from rest, then after time t
- falls some height $h \leftarrow$ want to find this

You know the exact result, but imagine you don't
If we have fully characterized the problem
then it should be possible to write

$$
\begin{equation*}
h=f(g, t) \tag{1}
\end{equation*}
$$

where f is an arbitrary (for now) function
to solve the problem: specify f

- could use Newtonian mechanics, honest calculation takes work (integration), gives exact result
- but we can get far just by looking at dimensions

Q: what does dimensional homogeneity imply for $h=f(g, t)$?
what does dimensional homogeneity mean
for our relation $h=f(g, t)$?

- since $[h]=[L]$
then we must have $[f]=[L]$
- but also: if h is measured in meters, then f must be as well
- so if we change to h^{\prime} in yards, then
$h^{\prime}=\lambda h$, and in yards $f^{\prime}=\lambda f$,
where both expressions have the same conversion rescaling λ
so we have: $h=f(g, t)$ dimensionally homogeneous
rewrite: $h / f(g, t)=$ const $=1$
\Rightarrow holds regardless of the units used
we see $h / f(g, t)$ forms a dimensionless constant but our variables have:
- $[g]=\left[L T^{-2}\right]$
- $[t]=[T]$
given these dimensions, only one grouping of variables h, t, and g is dimensionless

Q: find this grouping!
Q: use this to find the most general form of $f(g, t)$!
we have $[f(g, t)]=[L]$
but the only way to form a length from g and t is the unique combination: $g t^{2}$
so the most general dimensionally legal expression is

$$
\begin{equation*}
f(g, t)=C g t^{2} \tag{2}
\end{equation*}
$$

with C a dimensionless constant Q : what's wrong with $C g t^{2}+\wedge$, or $C\left(g t^{2}\right)^{2} / \wedge$, with \wedge a constant?
and thus our dimensionless ratio can only be

$$
\begin{equation*}
\frac{h}{f(g, t)}=\frac{1}{C} \frac{h}{g t^{2}}=\text { const }=1 \tag{3}
\end{equation*}
$$

and so we can now solve

$$
\begin{equation*}
h=C g t^{2} \tag{4}
\end{equation*}
$$

Without calculus, but only considering dimensions, we find

$$
\begin{equation*}
h=C g t^{2} \tag{5}
\end{equation*}
$$

with C an undetermined dimensionless constant that is independent of units used for h, g, t

Q: what does this equation teach us?
Q: what does this not give us?
Q: how could you test this equation without knowing C ?
Q : if you didn't know C, what's a reasonable order-of-magnitude guess?
Q: how could you find C if you didn't know calculus?
Q : what is the actual value of C ?

Dimensional Analysis: Lessons

what has

$$
\begin{equation*}
h=C g t^{2} \tag{6}
\end{equation*}
$$

done for us?

- scaling relations $h \propto g$ and $h \propto t^{2}$
- don't know C : constant, so "invisible" to dim. analysis
- can test $h \propto t^{2}$ without knowing C measure fall time for different h, see if quadratic
- if you had to guess, would try $C \sim 1$
- without calculus, could get this experimentally: measure h vs t, find $C=h / g t^{2}$
$\stackrel{\circ}{\circ}$ of course, freshman physics says $C=1 / 2$ order-of-magnitude guess off by factor 2 : not bad!

Dimensional Analysis: T-Shirt Version

What else could it be?

E.g.: the only length arising from g and t is $g t^{2}$ so we must have $h \sim g t^{2}$: what else could it be?

Lessons:

- gather all relevant variables
- find dimensionless grouping(s)
- use to solve for the result of interest
- shortcut: find combinations of variables with dimensions of the answer you want

But: what if variables allow
>1 independent dimensionless grouping?
$\stackrel{\rightharpoonup}{\lrcorner}$
i.e., more than one possible dimensionful answer?
...wait till next time!

Colloquium Preview

Next week, Sept. 23

- Robert Scherrer, Vanderbilt
- "Parameterizing Dark Energy"

Q: what is dark energy? why has it been proposed?

Q: how is dark energy similar to or different from dark matter?

Q: What is the simplest form of dark energy?

Q: What is w ? Why would it be a Big Deal if $w=-0.95 \pm 0.01$?

Q: What if there isn't dark energy?

