Astronomy 596/496 APA Lecture 5 Sept. 22, 2016

Today's Agenda
 * Order of Magnitude
 Buckingham Pi theorem
 HW recap

Next week: Skype conversation Stephen Licata, U of I Alumnus and NASA/JPL Scientist

Н

Homework Recap: Gravitational Timescale

recall: given density ρ , and Newton's G we can form a unique timescale: $\tau = 1/\sqrt{G\rho}$

Q: value when $\rho = \rho_{\oplus}$? implications?

N

Q: value for $\rho_0 = \rho_{\text{universe}}$? implications?

Q: implications for collapse of cloud with outwardly decreasing density?

Restated: given ρ and τ , plus G there is a single unique **dimensionless combination**

$$\theta = G\rho\tau^2 \tag{1}$$

Homework Implications, Continued

Compare:

- Earth gravitational collaps timescale
- treetop satellite orbit period
- period for object dropped into center-Earth borehole

Compare:

- Universe gravitational collapse timescale
- Universe expansion rate

Buckingham Pi Theorem

Simpleminded Example Becomes More Complex

last time:

- uniform (Newtonian) gravity field g
- particle released *from rest*
- falls height h in time t
- Q: unique dimensionless grouping?

now:

- particle released with initial speed v_0
 - \rightarrow new dimensionful parameter
 - Q: any new fundamental units?

Notice: two constants g and v_0

- can construct characteristic fundamental scale(s)
 Q: namely? physical significance?
- dimensionless group(s) Q: namely? we want $h = f(t, g, v_0)$: Q: how to proceed?

ы

Multiple Dimensionless Groups: Physics to the Rescue

New characteristic scales:

- time $t_{acc} = v_0/g$: timescale for acceleration to v_0
- length $h_{\rm acc} = v_0 t_{\rm acc} = v_0^2/g$: lengthscale for acceleration to v_0

Before: found dimensionless group $\theta_1 = gt^2/h$ physics only depends on this: some $F(\theta_1) = const$ in fact, good results with $F(\theta) = \theta$ Now: one new group possible, e.g., $\theta_2 = v_0 t/h$ must find $F(\theta_1, \theta_2) = const$ \rightarrow need physical insight to proceed

use characteristic scales:

 $^{\circ}$ Q: expected behavior for $t/t_{acc} \ll 1$? $t/t_{acc} \gg 1$? Q: implications for F? e.g., why not F ~ θ₁θ₂?

Short timescales $t/t_{acc} \ll 1$:

- acceleration hasn't changed speed much
- problem reduces to h, t, v_0

 $\Rightarrow F = F(\theta_2) \text{ only } \rightarrow h \sim v_0 t$

Long timescales: $t/t_{acc} \gg 1$:

• acceleration overwhelms v_0 problem reduces to h, t, g $\Rightarrow F = F(\theta_1)$ only $\rightarrow h \sim gt^2$

Full $F(\theta_1, \theta_2)$ must include these limits $F \sim \theta_1 \theta_2 \rightarrow 0$ if g = 0 or $v_0 = 0!$ illegal! \Rightarrow simplest legal choice: linear combo $F \sim \theta_1 + \theta_2$ $h \sim v_0 t + gt^2!$

Counting Dimensionless Groups

The Buckingham Pi Theorem (Buckingham 1914, 1915) In your problem identify:

- the number of physical variables
- the number of independent fundamental **units** \in [M, L, T]

Theorem:

of dimensionless groups = # of variables – # of units

Example:

- h, t, g problem: variables = 3, units = 2 \rightarrow groups = 1 check!
- h, t, g, v_0 problem: variables = 4, units = 2 \rightarrow groups = 2 *check*!

 $^{\circ}$