Astronomy 596/496 APA Lecture 9 Oct. 20, 2016

Announcements:

• No HW was due today. Sad!

Today's Agenda

- \star Order of Magnitude
- ★ Colloquium Preview

Order of Magnitude: Milky Way Black Holes

- 0. Guess the number N_{bh} of black holes in our Galaxy
- 1. Think of at least *two ways* to estimate N_{bh} based on known/knowable inputs
- 2. Estimate the distance d to the nearest black hole
- 3. Bonus: Is there more mass in Sgr A^* or the other black holes?

Order of Magnitude: Near-Earth Supernovae

A supernova explosion becomes dangerous at distance $d \leq d_{\rm kill} \approx 8 {\rm pc}$

Q: guess why–what's the nature of the biohazard?

- 1. Come up with an expression estimating the rate $\lambda(d)$ of supernovae at distance $\leq d$
- 2. Estimate the typical timescale for supernovae inside d_{kill} To what should this timescale be compared? What do we learn?
- $_{\omega}$ 3. Bonus: Radioactive 60 Fe on the Earth and Moon tell us that a supernova exploded 2–3 Myr ago at $d\sim20-100$ pc Is this a surprise?

Colloquium Preview

Next week, Oct. 25

• Jennifer van Saders, Carnegie Observatories "Tuning the Clock: Making Sense of Stellar Rotation Observed with *Kepler*"

Q: What is Kepler?

- Q: How can it measure stellar rotation?
- *Q*: Why do stars rotate at all?

Q: How does the Sun's rotation period compare to other main sequence stars—higher and lower mass?

Q: How could stellar rotation be used to probe stellar age? fun term of art: *gyrochronology*

Q: Why is it useful to know stellar ages?