Astronomy 501: Radiative Processes
 Lecture 10
 Sept 19, 2018

Announcements:

- Problem Set 3 due Friday at start of class

Last time:
isotropic coherent scattering Q : what's that? transfer eq? random walk Q : what's that? rms progress after N steps?

Combined Scattering and Absorption

generally, matter can both scatter and absorb photons transfer equation must include both
for coherent isotropic scattering of thermal radiation

$$
\begin{equation*}
\frac{d I_{\nu}}{d s}=-\alpha_{\nu}\left(I_{\nu}-B_{\nu}\right)-\varsigma_{\nu}\left(I_{\nu}-J_{\nu}\right) \tag{1}
\end{equation*}
$$

giving a source function

$$
\begin{equation*}
S_{\nu}=\frac{\alpha_{\nu} B_{\nu}+\varsigma_{\nu} J_{\nu}}{\alpha_{\nu}+\varsigma_{\nu}} \tag{2}
\end{equation*}
$$

a weighted average of the two source functions
thus we can write

$$
\begin{equation*}
\frac{d I_{\nu}}{d s}=-\left(\alpha_{\nu}+\varsigma_{\nu}\right)\left(I_{\nu}-S_{\nu}\right) \tag{3}
\end{equation*}
$$

with extinction coefficient $\alpha_{\nu}+\varsigma_{\nu}$
generalize mean free path:

$$
\begin{equation*}
\ell_{\mathrm{mfp}, \nu}=\frac{1}{\alpha_{\nu}+\varsigma_{\nu}} \tag{4}
\end{equation*}
$$

average distance between photon interactions
in random walk picture:
probability of step ending in absorption

$$
\begin{equation*}
\epsilon_{\nu} \equiv \alpha_{\nu} \ell_{\mathrm{mfp}, \nu}=\frac{\alpha_{\nu}}{\alpha_{\nu}+\varsigma_{\nu}} \tag{5}
\end{equation*}
$$

and thus step scattering probability

$$
\begin{equation*}
\varsigma_{\nu} \ell_{\mathrm{mfp}, \nu}=\frac{\varsigma_{\nu}}{\alpha_{\nu}+\varsigma_{\nu}}=1-\epsilon_{\nu} \tag{6}
\end{equation*}
$$

also known as single scattering albedo
source function:

$$
\begin{equation*}
S_{\nu}=\epsilon_{\nu} B_{\nu}+\left(1-\epsilon_{\nu}\right) J_{\nu} \tag{7}
\end{equation*}
$$

Random Walk with Scattering and Absorption

in infinite medium: every photon created is eventually absorbed typical absorption path $\ell_{\mathrm{abs}, \nu}=1 / \alpha_{\nu}$
typical number of scattering events until absorption is

$$
\begin{equation*}
N_{\mathrm{scat}}=\frac{\ell_{\mathrm{abs}, \nu}}{\ell_{\mathrm{mfp}, \nu}}=\frac{\varsigma_{\nu}+\alpha_{\nu}}{\alpha_{\nu}}=\frac{1}{\epsilon_{\nu}} \tag{8}
\end{equation*}
$$

so typical distance traveled between creation and absorption

$$
\begin{equation*}
\ell_{*}=\sqrt{N_{\mathrm{scat}}} \ell_{\mathrm{mfp}, \nu}=\sqrt{\ell_{\mathrm{abs}, \nu} \ell_{\mathrm{mfp}, \nu}}=\frac{1}{\sqrt{\alpha_{\nu}\left(\alpha_{\nu}+\varsigma_{\nu}\right)}} \tag{9}
\end{equation*}
$$

diffusion/thermalization length or effective mean free path
What about a finite medium of size s ? define optical thicknesses $\tau_{\text {scat }}=\varsigma_{\nu} s, \tau_{\text {abs }}=\alpha_{\nu} s$
${ }_{\Delta}$ and $\tau_{*}=s / \ell_{*}=\tau_{\text {scat }}^{1 / 2}\left(\tau_{\text {scat }}+\tau_{\text {abs }}\right)^{1 / 2}$
Q: expected behavior if $\tau_{*} \ll 1 ? \tau_{*} \gg 1$?
$\tau_{*}=s / \ell_{*}$: path in units of photon travel
until absorption
$\tau_{*} \ll 1$: effectively thin or translucent
photons random walk by scattering, seen before absorption luminosity of thermal source with volume V is

$$
\begin{equation*}
L_{\nu} \stackrel{\text { thin }}{=} 4 \pi \alpha_{\nu} B_{\nu} V=4 \pi j_{\nu}(T) V \tag{10}
\end{equation*}
$$

$\tau_{*} \gg 1$: effectively tick
thermally emitted photons scattered then absorbed before seen expect $I_{\nu} \rightarrow S_{\nu} \rightarrow B_{\nu}$
rough estimate of luminosity of thermal source: most emission from "last scattering" surface of area A where photons travel $s=\ell_{*}$

$$
\begin{equation*}
L_{\nu} \stackrel{\text { thick }}{\approx} 4 \pi \alpha_{\nu} B_{\nu} \ell_{*} A \approx 4 \pi \sqrt{\epsilon_{\nu}} B_{\nu} A \tag{11}
\end{equation*}
$$

Walking on the Sun?

the Sun in optical (peak emission) shows a sharp surface www: the optical Sun today
yet the Sun is a gasball-no surface at all! and gas density drops continuously - no edge

Q: so what's the deal?
Q : what determines apparent surface?
Q: order of magnitude estimate?
Q: how would you make the calculation rigorous?

Stellar Photospheres

stellar photons are born in the deep interior and scatter until they reach us
the photons that we see had last scattering in the solar photosphere, roughly where

$$
\ell_{\mathrm{mfp}} \mid \sim R_{\odot}
$$

i.e., photosphere is where $\tau_{\mathrm{sc}}\left(R_{\odot}\right) \sim 1$

a more rigorous calculation studies the scattering in detail e.g., Eddington approximation gives $\tau=2 / 3$

Q: how are things different in solar interior?

Life Inside a Star

In stars:

- nuclear reactions create energy and γ rays deep in the interior (core)
- the energy and radiation escape to the surface after many interactions

How does this occur?

Consider a point at stellar radius r with temperature $T(r)$ having blackbody radiation at T, and matter

Q: what is intensity pattern (i.e., over solid angle) ifT is uniform?
Q: what is the pattern more realistically?
Q: what drives the outward energy flow? what impedes it?
Q: relevant length scale(s) for radiation flow?
if $T(r)$ uniform and has no gradient, so are blackbody intensity B and flux T
\rightarrow no net flow of radiation!
but in real stars: T decreases with r
so at r :

- intensity from below greater than from above
- drive net flux outwards
- impeded by scattering and absorption on scale $\ell_{\mathrm{mfp}, \nu}=\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1}$

- generally $\ell_{\mathrm{mfp}, \nu} \ll r$: over this scale, see radiation as mostly isotropic with small dipole

Radiative Diffusion: Sketch Rosseland Approximation

given a small temperature dipole, expect net radiation flux

$$
\begin{align*}
F_{\nu}^{\text {net }} & \sim-\pi \Delta B_{\nu} \sim-\pi\left[B_{\nu}\left(T_{r+\delta r}\right)-B_{\nu}\left(T_{r}\right)\right] \tag{12}\\
& =-\pi \frac{\partial B_{\nu}}{\partial T} \frac{\partial T}{\partial r} \delta r \tag{13}\\
& \sim-\pi \frac{\partial B_{\nu}}{\partial T} \frac{\partial T}{\partial r} \ell_{\mathrm{mfp}, \nu} \tag{14}
\end{align*}
$$

So the total flux $F=\int F_{\nu}^{\text {net }} d \nu$ has

$$
\begin{equation*}
F=-\frac{4}{3} \pi \frac{\partial_{T} B}{\alpha_{\mathrm{R}}} \partial_{r} T \tag{15}
\end{equation*}
$$

- $\vec{F} \propto-\nabla T$: diffusion flux! requires gradient!
- average over ν gives Rosseland mean absorption coefficient
$\stackrel{\rightharpoonup}{\circ}$

$$
\begin{equation*}
\frac{1}{\alpha_{R}}=\frac{\int\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1} \partial_{T} B_{\nu} d \nu}{\int \partial_{T} B_{\nu} d \nu} \tag{16}
\end{equation*}
$$

effective mean free path, weighted by Planck derivative

Radiative Flux in the Rosseland Approximation

using Rosseland mean, the (total) photon energy flux is

$$
\begin{equation*}
F(z)=-\frac{16 \sigma T^{3}}{3 \alpha_{R}} \frac{\partial T}{\partial z} \tag{17}
\end{equation*}
$$

Rosseland approximation to radiative flux
Q: what if T uniform? decreasing upwards? implications for stars?

Note:

- whenever energy (heat) flux $\vec{F}=-\chi \nabla T$ coefficient χ is the heat conductivity
- in the presence of a heat flux, thermal energy density changes:

$$
\begin{equation*}
\partial_{t} u=-\nabla \cdot \vec{F} \tag{18}
\end{equation*}
$$

\neq
a continuity equation, i.e., local statement of energy conservation for radiation, $u=u(T)$, so $\partial_{t} T \sim D \nabla^{2} T$: a diffusion equation!
in stars, energy must be transported from interior where it is created by thermonuclear reactions upwards until it is radiated to space
in regions when temperature gradient $\partial_{z} T$ not too large radiative diffusion is the mechanism for energy transport i.e., photons random walk their way out of the star

- typical solar photon is millions of years old
- unlike neutrinos which are minutes old
photon luminosity in interior radius r is

$$
\begin{equation*}
L(r)=4 \pi r^{2} F(r)=-4 \pi r^{2} \frac{16 \sigma T^{3}}{3 \alpha_{R}} \frac{\partial T}{\partial r} \tag{19}
\end{equation*}
$$

solar temperature drops with radius, $\partial_{z} T<0$,
so $L>0$: energy flows outwards!

Classical Electromagnetic Radiation

Electromagnetic Forces on Particles

Consider non-relativistic classical particle with mass m, charge q and velocity \vec{v}
under an electric field \vec{E} and magnetic field \vec{B} the particle feels a force

$$
\begin{equation*}
\vec{F}=q \vec{E}+q \frac{\vec{v}}{c} \times \vec{B} \tag{20}
\end{equation*}
$$

sums Coulomb and Lorentz forces units: cgs throughout; has nice property that $[E]=[B]$
power supplied by EM fields to charge

$$
\begin{equation*}
\frac{d U_{\mathrm{mech}}}{d t}=\vec{v} \cdot \vec{F}=q \vec{v} \cdot \vec{E}=\frac{d}{d t} \frac{m v^{2}}{2} \tag{21}
\end{equation*}
$$

' $\stackrel{A}{ }$ no contribution from \vec{B} : "magnetic fields do no work"
Q: what if smoothly distributed charge density and velocity field?

Electromagnetic Forces on Continuous Media

consider a medium with charge density ρ_{q}
and current density $\vec{j}=\rho_{q} \vec{v}$
by considering an "element" of charge $d q=\rho_{q} d V$
we find force density, defined via $d \vec{F}=\vec{f} d V$:

$$
\begin{equation*}
\vec{f}=\rho_{q} \vec{E}+\frac{\vec{j}}{c} \times \vec{B} \tag{22}
\end{equation*}
$$

and a power density supplied by the fields

$$
\begin{equation*}
\frac{\partial u_{\mathrm{mech}}}{\partial t}=\vec{j} \cdot \vec{E} \tag{23}
\end{equation*}
$$

note: if medium is a collection of point sources $q_{i}, \vec{r}_{i}, \vec{v}_{i}$

$$
\begin{equation*}
\rho_{q}(\vec{r})=\sum_{i} q_{i} \delta\left(\vec{r}-\vec{r}_{i}\right) \tag{24}
\end{equation*}
$$

and current density is

$$
\begin{equation*}
\vec{j}(\vec{r})=\sum_{i} q_{i} \vec{v}_{i} \delta\left(\vec{r}-\vec{r}_{i}\right) \tag{25}
\end{equation*}
$$

Maxwell's Equations

Maxwell relates fields to charge and current distributions
in the absence of dielectric media $(\epsilon=1)$
or permeable media $(\mu=1)$:

$$
\begin{array}{rlr}
\nabla \cdot \vec{E} & =4 \pi \rho_{q} & \text { Coulomb's law } \\
\nabla \cdot \vec{B} & =0 & \text { no magnetic monopoles } \\
\nabla \times \vec{B} & =-\frac{1}{c} \partial_{t} \vec{B} & \text { Faraday's law } \tag{26}\\
\nabla \times \vec{B} & =\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \partial_{t} \vec{E} & \text { Ampère's law }
\end{array}
$$

take divergence of Ampère

$$
\begin{equation*}
\partial_{t} \rho_{q}+\nabla \cdot \vec{j}=0 \tag{27}
\end{equation*}
$$

conservation of charge!
$\stackrel{\rightharpoonup}{\nu}$ now can rewrite power exerted by fields on charges in terms of fields only Q : how?

Field Energy

Power density exerted by fields on charges

$$
\begin{equation*}
\frac{\partial u_{\mathrm{mech}}}{\partial t}=\vec{j} \cdot \vec{E}=\frac{1}{4 \pi}\left(c \nabla \times \vec{B}-\partial_{t} \vec{E}\right) \cdot \vec{E} \tag{28}
\end{equation*}
$$

with clever repeated use of Maxwell, can recast in this form:

$$
\begin{equation*}
\frac{\partial u_{\mathrm{fields}}}{\partial t}+\nabla \cdot \vec{S}=-\frac{\partial u_{\mathrm{mech}}}{\partial t} \tag{29}
\end{equation*}
$$

Q: physical significance of eq. (29)?
energy change per unit time

$$
\begin{equation*}
\frac{\partial u_{\mathrm{fields}}}{\partial t}+\nabla \cdot \vec{S}=-\frac{\partial u_{\mathrm{mech}}}{\partial t} \tag{30}
\end{equation*}
$$

reminiscent of $\partial_{t} \rho_{q}+\nabla \cdot \vec{j}=0$
\rightarrow an expression of local conservation of energy where the mechanical energy acts as source/sink
identify electromagnetic field energy density

$$
\begin{equation*}
u_{\mathrm{fields}}=\frac{E^{2}+B^{2}}{8 \pi} \tag{31}
\end{equation*}
$$

i.e., $u_{E}=E^{2} / 8 \pi$, and $u_{B}=B^{2} / 8 \pi$
and Poynting vector is flux of EM energy

$$
\begin{equation*}
\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{B} \tag{32}
\end{equation*}
$$

${ }^{\bullet}$ this is huge for us ASTR 501 folk! EM flux!
Q: when zero? nonzero? direction?

Electromagnetic Waves

in vacuum ($\rho_{q}=0=\vec{j}$), and in Cartesian coordinates Maxwell's equations imply (PS3):

$$
\begin{align*}
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E}=0 \tag{33}\\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}=0 \tag{34}
\end{align*}
$$

both fields satisfy a wave equation
wave equation invites Fourier transform of fields:

$$
\begin{equation*}
\vec{E}(\vec{k}, \omega)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{r} d t \quad \vec{E}(\vec{x}, t) e^{-i(\vec{k} \cdot \vec{r}-\omega t)} \tag{35}
\end{equation*}
$$

inverse transformation:

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{k} d \omega \quad \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{36}
\end{equation*}
$$

note symmetry between transformation (but sign flip in phase!)
original real-space field can be expressed as

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{k} d \omega \quad \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{37}
\end{equation*}
$$

expansion in sum of Fourier modes with

- wavevector \vec{k}
magnitude $k=2 \pi / \lambda$, direction $\hat{n}=\vec{k} / k$
- angular frequency $\omega=2 \pi \nu$
apply wave equation to Fourier expansion:

$$
\begin{align*}
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E} & =-\frac{1}{(2 \pi)^{2} c^{2}} \int d^{3} \vec{k} d \omega\left(c^{2} k^{2}-\omega^{2}\right) \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{r}(38 t)} \\
& =0 \tag{39}
\end{align*}
$$

for notrivial solutions with $\vec{E} \neq 0$,
this requires $\omega^{2}=c^{2} k^{2}$, or vacuum dispersion relation

$$
\begin{equation*}
\omega=c k \tag{40}
\end{equation*}
$$

i.e., wave solutions require constant phase velocity $v_{\phi}=\omega / k=c$

Director's Cut Extras

Rosseland Approximation in Detail

Imagine a plane-parallel medium:
n, ρ, T only depend on z
Think: interior of a star

photon propagation depends only on angle θ between path direction and $\bar{z} Q$: why? why not on ϕ too?
change to variable $\mu=\cos \theta$, and note that path element $d s=d z / \cos \theta=d z / \mu$, so

$$
\begin{equation*}
\mu \frac{\partial I_{\nu}(z, \mu)}{\partial z}=-\left(\alpha_{\nu}+\varsigma_{\nu}\right)\left(I_{\nu}-S_{\nu}\right) \tag{41}
\end{equation*}
$$

note: deep inside a real star like the Sun, $\ell_{*} \sim 1 \mathrm{~cm} \ll R_{\star}$ Q : implications?
$\ell_{*} \sim 1 \mathrm{~cm} \ll R_{\star}$: rapid thermalization, damping of anisotropy
expect stellar interior to have intensity field that

- changes slowly compared to mean free path
- is nearly isotropic
so to zeroth order in ℓ_{*}, transfer equation

$$
\begin{equation*}
I_{\nu}=S_{\nu}-\mu \ell_{*} \frac{\partial I_{\nu}(z, \mu)}{\partial z} \tag{42}
\end{equation*}
$$

gives

$$
\begin{equation*}
I_{\nu}^{(0)} \approx S_{\nu}^{(0)}(T) \tag{43}
\end{equation*}
$$

this is angle-independent, so: $J_{\nu}^{(0)}=S_{\nu}^{(0)}$ and $I_{\nu}^{(0)}=S_{\nu}^{(0)}=B_{\nu}$

Iterate to get first-order approximation

$$
\begin{equation*}
I_{\nu}^{(1)} \approx S_{\nu}^{(0)}-\mu \ell_{*} \partial_{z} I_{\nu}^{(0)}=B_{\nu}-\frac{\mu}{\alpha_{\nu}+\varsigma_{\nu}} \partial_{z} B_{\nu} \tag{44}
\end{equation*}
$$

what angular pattern does this intensity field have? why?
to first order, intensity pattern

$$
\begin{equation*}
I_{\nu}^{(1)} \approx S_{\nu}^{(0)}-\mu \ell_{*} \partial_{z} I_{\nu}^{(0)}=B_{\nu}-\frac{\mu}{\alpha_{\nu}+\varsigma_{\nu}} \partial_{z} B_{\nu} \tag{45}
\end{equation*}
$$

i.e., a dominant isotropic component plus small correction $\propto \mu=\cos \theta$: a dipole!
if T decreases with z, then $\partial_{z} B_{\nu}<0$, and so intensity brighter downwards (looking into hotter region)
use this find net specific flux along z

$$
\begin{equation*}
F_{\nu}(z)=\int I_{\nu}^{(1)}(z, \mu) \cos \theta d \Omega=2 \pi \int_{-1}^{+1} I_{\nu}^{(1)}(z, \mu) \mu d \mu \tag{46}
\end{equation*}
$$

only the anisotropic piece of $I_{\nu}^{(0)}$ of survives Q : why?

$$
\begin{align*}
F_{\nu}(z) & =-\frac{2 \pi}{\alpha_{\nu}+\varsigma_{\nu}} \partial_{z} B_{\nu} \int_{-1}^{+1} \mu^{2} d \mu \tag{47}\\
& =-\frac{4 \pi}{3\left(\alpha_{\nu}+\varsigma_{\nu}\right)} \partial_{z} B_{\nu} \tag{48}
\end{align*}
$$

net specific flux along z

$$
\begin{equation*}
F_{\nu}(z)=-\frac{4 \pi}{3\left(\alpha_{\nu}+\varsigma_{\nu}\right)} \partial_{z} B_{\nu}=-\frac{4 \pi}{3\left(\alpha_{\nu}+\varsigma_{\nu}\right)} \partial_{T} B_{\nu} \partial_{z} T \tag{49}
\end{equation*}
$$

since $B_{\nu}=B_{\nu}(T)$

total integrated flux

$$
\begin{equation*}
F(z)=\int F_{\nu}(z) d \nu=-\frac{4 \pi}{3} \partial_{z} T \int\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1} \frac{\partial B_{\nu}}{\partial T} d \nu \tag{50}
\end{equation*}
$$

to make pretty, note that

$$
\begin{equation*}
\int \partial_{T} B_{\nu} d \nu=\partial_{T} \int B_{\nu} d \nu=\partial_{T} B(T)=\frac{4 \pi \sigma T^{3}}{\pi} \tag{51}
\end{equation*}
$$

and define Rosseland mean absorption coefficient

$$
\begin{equation*}
\frac{1}{\alpha_{R}}=\frac{\int\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1} \partial_{T} B_{\nu} d \nu}{\int \partial_{T} B_{\nu} d \nu} \tag{52}
\end{equation*}
$$

average effective mean free path, weighted by Planck derivative

