
Astronomy 501: Radiative Processes

Lecture 10

Sept 19, 2018

Announcements:

• Problem Set 3 due Friday at start of class

Last time:

isotropic coherent scattering Q: what’s that? transfer eq?

random walk Q: what’s that? rms progress after N steps?
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Combined Scattering and Absorption

generally, matter can both scatter and absorb photons

transfer equation must include both

for coherent isotropic scattering of thermal radiation

dIν

ds
= −αν(Iν − Bν) − ςν(Iν − Jν) (1)

giving a source function

Sν =
ανBν + ςνJν

αν + ςν
(2)

a weighted average of the two source functions

thus we can write

dIν

ds
= −(αν + ςν)(Iν − Sν) (3)

with extinction coefficient αν + ςν
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generalize mean free path:

ℓmfp,ν =
1

αν + ςν
(4)

average distance between photon interactions

in random walk picture:

probability of step ending in absorption

ǫν ≡ ανℓmfp,ν =
αν

αν + ςν
(5)

and thus step scattering probability

ςνℓmfp,ν =
ςν

αν + ςν
= 1 − ǫν (6)

also known as single scattering albedo

source function:

Sν = ǫνBν + (1 − ǫν)Jν (7)
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Random Walk with Scattering and Absorption

in infinite medium: every photon created is eventually absorbed

typical absorption path ℓabs,ν = 1/αν

typical number of scattering events until absorption is

Nscat =
ℓabs,ν

ℓmfp,ν
=

ςν + αν

αν
=

1

ǫν
(8)

so typical distance traveled between creation and absorption

ℓ∗ =
√

Nscatℓmfp,ν =
√

ℓabs,νℓmfp,ν =
1

√

αν(αν + ςν)
(9)

diffusion/thermalization length or effective mean free path

What about a finite medium of size s?
define optical thicknesses τscat = ςνs, τabs = αν s

and τ∗ = s/ℓ∗ = τ
1/2
scat(τscat + τabs)

1/2

Q: expected behavior if τ∗ ≪ 1? τ∗ ≫ 1?
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τ∗ = s/ℓ∗: path in units of photon travel

until absorption

τ∗ ≪ 1: effectively thin or translucent

photons random walk by scattering, seen before absorption

luminosity of thermal source with volume V is

Lν
thin
= 4πανBνV = 4πjν(T)V (10)

τ∗ ≫ 1: effectively tick

thermally emitted photons scattered then absorbed before seen

expect Iν → Sν → Bν

rough estimate of luminosity of thermal source:

most emission from “last scattering” surface of area A

where photons travel s = ℓ∗

Lν
thick≈ 4πανBνℓ∗A ≈ 4π

√
ǫν BνA (11)
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Walking on the Sun?

the Sun in optical (peak emission) shows a sharp surface

www: the optical Sun today

yet the Sun is a gasball–no surface at all!

and gas density drops continuously – no edge

Q: so what’s the deal?

Q: what determines apparent surface?

Q: order of magnitude estimate?

Q: how would you make the calculation rigorous?
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Stellar Photospheres

stellar photons are born in the deep interior

and scatter until they reach us

the photons that we see had last scattering

in the solar photosphere, roughly where

ℓmfp| ∼ R⊙

i.e., photosphere is where τsc(R⊙) ∼ 1

Random Walk:  R/ℓ= 20.0; Nsteps= 314

density profile: uniform

a more rigorous calculation studies the scattering in detail

e.g., Eddington approximation gives τ = 2/3

Q: how are things different in solar interior?
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Life Inside a Star

In stars:

• nuclear reactions create energy and γ rays

deep in the interior (core)

• the energy and radiation escape to the surface

after many interactions

How does this occur?

Consider a point at stellar radius r with temperature T(r)

having blackbody radiation at T , and matter

Q: what is intensity pattern (i.e., over solid angle) if T is uniform?

Q: what is the pattern more realistically?

Q: what drives the outward energy flow? what impedes it?

Q: relevant length scale(s) for radiation flow?
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if T(r) uniform and has no gradient,

so are blackbody intensity B and flux T

→ no net flow of radiation!

but in real stars: T decreases with r

so at r:

• intensity from below greater than from above

• drive net flux outwards

• impeded by scattering and absorption

on scale ℓmfp,ν = (αν + ςν)−1

+r

upperT

Tlower

=

=gradient isotropic dipole+

• generally ℓmfp,ν ≪ r: over this scale, see radiation as

mostly isotropic with small dipole
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Radiative Diffusion: Sketch Rosseland Approximation

given a small temperature dipole, expect net radiation flux

Fnet
ν ∼ −π∆Bν ∼ −π

[

Bν(Tr+δr) − Bν(Tr)
]

(12)

= −π
∂Bν

∂T

∂T

∂r
δr (13)

∼ −π
∂Bν

∂T

∂T

∂r
ℓmfp,ν (14)

So the total flux F =
∫

Fnet
ν dν has

F = −4

3
π

∂TB

αR
∂rT (15)

• ~F ∝ −∇T : diffusion flux! requires gradient!

• average over ν gives Rosseland mean absorption coefficient

1

αR
=

∫

(αν + ςν)−1∂TBν dν
∫

∂TBν dν
(16)

effective mean free path, weighted by Planck derivative
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Radiative Flux in the Rosseland Approximation

using Rosseland mean, the (total) photon energy flux is

F(z) = −16σT3

3αR

∂T

∂z
(17)

Rosseland approximation to radiative flux

Q: what if T uniform? decreasing upwards? implications for

stars?

Note:

• whenever energy (heat) flux ~F = −χ∇T

coefficient χ is the heat conductivity

• in the presence of a heat flux, thermal energy density changes:

∂tu = −∇ · ~F (18)

a continuity equation, i.e., local statement of energy conservation

for radiation, u = u(T), so ∂tT ∼ D∇2T : a diffusion equation!
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in stars, energy must be transported from interior

where it is created by thermonuclear reactions

upwards until it is radiated to space

in regions when temperature gradient ∂zT not too large

radiative diffusion is the mechanism for energy transport

i.e., photons random walk their way out of the star

• typical solar photon is millions of years old

• unlike neutrinos which are minutes old

photon luminosity in interior radius r is

L(r) = 4πr2 F(r) = −4πr2
16σT3

3αR

∂T

∂r
(19)

solar temperature drops with radius, ∂zT < 0,

so L > 0: energy flows outwards!
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Classical Electromagnetic Radiation
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Electromagnetic Forces on Particles

Consider non-relativistic classical particle

with mass m, charge q and velocity ~v

under an electric field ~E and magnetic field ~B
the particle feels a force

~F = q ~E + q
~v

c
× ~B (20)

sums Coulomb and Lorentz forces

units: cgs throughout; has nice property that [E] = [B]

power supplied by EM fields to charge

dUmech

dt
= ~v · ~F = q ~v · ~E =

d

dt

mv2

2
(21)

no contribution from ~B: “magnetic fields do no work”

Q: what if smoothly distributed charge density and velocity field?
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Electromagnetic Forces on Continuous Media

consider a medium with charge density ρq

and current density ~j = ρq~v

by considering an “element” of charge dq = ρq dV

we find force density, defined via d~F = ~f dV :

~f = ρq ~E +
~j

c
× ~B (22)

and a power density supplied by the fields

∂umech

∂t
= ~j · ~E (23)
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note: if medium is a collection of point sources qi, ~ri, ~vi

ρq(~r) =
∑

i

qi δ(~r − ~ri) (24)

and current density is

~j(~r) =
∑

i

qi ~vi δ(~r − ~ri) (25)
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Maxwell’s Equations

Maxwell relates fields to charge and current distributions

in the absence of dielectric media (ǫ = 1)

or permeable media (µ = 1):

∇ · ~E = 4πρq Coulomb’s law

∇ · ~B = 0 no magnetic monopoles

∇× ~E = −1
c∂t

~B Faraday’s law

∇× ~B = 4π
c

~j+1
c∂t

~E Ampère’s law

(26)

take divergence of Ampère

∂tρq + ∇ ·~j = 0 (27)

conservation of charge!

now can rewrite power exerted by fields on charges

in terms of fields only Q: how?
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Field Energy

Power density exerted by fields on charges

∂umech

∂t
= ~j · ~E =

1

4π

(

c∇× ~B − ∂t
~E

)

· ~E (28)

with clever repeated use of Maxwell,

can recast in this form:

∂ufields

∂t
+ ∇ · ~S = −∂umech

∂t
(29)

Q: physical significance of eq. (29)?
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energy change per unit time

∂ufields

∂t
+ ∇ · ~S = −∂umech

∂t
(30)

reminiscent of ∂tρq + ∇ ·~j = 0

→ an expression of local conservation of energy

where the mechanical energy acts as source/sink

identify electromagnetic field energy density

ufields =
E2 + B2

8π
(31)

i.e., uE = E2/8π, and uB = B2/8π

and Poynting vector is flux of EM energy

~S =
c

4π
~E × ~B (32)

this is huge for us ASTR 501 folk! EM flux!

Q: when zero? nonzero? direction?
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Electromagnetic Waves

in vacuum (ρq = 0 = ~j), and in Cartesian coordinates

Maxwell’s equations imply (PS3):

∇2 ~E − 1

c2
∂2

t
~E = 0 (33)

∇2 ~B − 1

c2
∂2

t
~B = 0 (34)

both fields satisfy a wave equation

wave equation invites Fourier transform of fields:

~E(~k, ω) =
1

(2π)2

∫

d3~r dt ~E(~x, t) e−i(~k·~r−ωt) (35)

inverse transformation:

~E(~x, t) =
1

(2π)2

∫

d3~k dω ~E(~k, ω) ei(~k·~r−ωt) (36)

note symmetry between transformation (but sign flip in phase!)
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original real-space field can be expressed as

~E(~x, t) =
1

(2π)2

∫

d3~k dω ~E(~k, ω) ei(~k·~r−ωt) (37)

expansion in sum of Fourier modes with

• wavevector ~k

magnitude k = 2π/λ, direction n̂ = ~k/k

• angular frequency ω = 2π ν

apply wave equation to Fourier expansion:

∇2 ~E − 1

c2
∂2

t
~E = − 1

(2π)2c2

∫

d3~k dω (c2k2 − ω2) ~E(~k, ω) ei(~k·~r−ωt)(38)

= 0 (39)

for notrivial solutions with ~E 6= 0,

this requires ω2 = c2k2, or vacuum dispersion relation

ω = ck (40)

i.e., wave solutions require constant phase velocity vφ = ω/k = c
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Director’s Cut Extras
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Rosseland Approximation in Detail

Imagine a plane-parallel medium:

n, ρ, T only depend on z

Think: interior of a star dz

z

ds=dz  / cos θθ

photon propagation depends only on angle θ
between path direction and ẑ Q: why? why not on φ too?

change to variable µ = cos θ, and note that

path element ds = dz/ cos θ = dz/µ, so

µ
∂Iν(z, µ)

∂z
= −(αν + ςν)(Iν − Sν) (41)

note: deep inside a real star like the Sun, ℓ∗ ∼ 1 cm ≪ R⋆

Q: implications?
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ℓ∗ ∼ 1 cm ≪ R⋆: rapid thermalization, damping of anisotropy

expect stellar interior to have intensity field that

• changes slowly compared to mean free path

• is nearly isotropic

so to zeroth order in ℓ∗, transfer equation

Iν = Sν − µℓ∗
∂Iν(z, µ)

∂z
(42)

gives

I
(0)
ν ≈ S

(0)
ν (T) (43)

this is angle-independent, so: J
(0)
ν = S

(0)
ν and I

(0)
ν = S

(0)
ν = Bν

Iterate to get first-order approximation

I
(1)
ν ≈ S

(0)
ν − µℓ∗∂zI

(0)
ν = Bν − µ

αν + ςν
∂zBν (44)

what angular pattern does this intensity field have? why?

2
4



to first order, intensity pattern

I
(1)
ν ≈ S

(0)
ν − µℓ∗∂zI

(0)
ν = Bν − µ

αν + ςν
∂zBν (45)

i.e., a dominant isotropic component plus

small correction ∝ µ = cos θ: a dipole!

if T decreases with z, then ∂zBν < 0, and so

intensity brighter downwards (looking into hotter region)

use this find net specific flux along z

Fν(z) =

∫

I
(1)
ν (z, µ) cos θ dΩ = 2π

∫ +1

−1
I
(1)
ν (z, µ) µ dµ (46)

only the anisotropic piece of I
(0)
ν of survives Q: why?

Fν(z) = − 2π

αν + ςν
∂zBν

∫ +1

−1
µ2 dµ (47)

= − 4π

3(αν + ςν)
∂zBν (48)
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net specific flux along z

Fν(z) = − 4π

3(αν + ςν)
∂zBν = − 4π

3(αν + ςν)
∂TBν ∂zT (49)

since Bν = Bν(T)

total integrated flux

F(z) =
∫

Fν(z) dν = −4π

3
∂zT

∫

(αν + ςν)
−1∂Bν

∂T
dν (50)

to make pretty, note that

∫

∂TBν dν = ∂T

∫

Bν dν = ∂TB(T) =
4πσT3

π
(51)

and define Rosseland mean absorption coefficient

1

αR
=

∫

(αν + ςν)−1∂TBν dν
∫

∂TBν dν
(52)

average effective mean free path, weighted by Planck derivative
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