Astro 501: Radiative Processes
 Lecture 12
 Sept. 24, 2018

Announcements:

- Problem Set 4 due Friday
- Problem Set 3 extended to today

Last time: began classical EM radiation
Q : energy density?
Q: Poynting vector?

Electromagnetic Waves

in vacuum ($\rho_{q}=0=\vec{j}$), and in Cartesian coordinates Maxwell's equations imply (PS3):

$$
\begin{align*}
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E}=0 \tag{1}\\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}=0 \tag{2}
\end{align*}
$$

Q: why is this gorgeous and profound?
Q: natural description?
vacuum Maxwell:

$$
\begin{align*}
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E}=0 \tag{3}\\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}=0 \tag{4}
\end{align*}
$$

both fields satisfy a wave equation
i.e., both fields support (undamped) waves with speed c
simplest wave solutions: sinusoids
superposition: arbitrary wave is sum of sinusoids
wave equation invites Fourier transform of fields:

$$
\begin{equation*}
\vec{E}(\vec{k}, \omega)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{r} d t \quad \vec{E}(\vec{x}, t) e^{-i(\vec{k} \cdot \vec{r}-\omega t)} \tag{5}
\end{equation*}
$$

inverse transformation:

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{k} d \omega \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{6}
\end{equation*}
$$

note symmetry between transformation (but sign flip in phase!)
original real-space field can be expressed as

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{k} d \omega \quad \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{7}
\end{equation*}
$$

expansion in sum of Fourier modes with

- wavevector \vec{k}
magnitude $k=2 \pi / \lambda$, propagation direction $\hat{n}=\vec{k} / k$
- angular frequency $\omega=2 \pi \nu$
apply wave equation to Fourier expansion:

$$
\begin{aligned}
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E} & =-\frac{1}{(2 \pi)^{2} c^{2}} \int d^{3} \vec{k} d \omega\left(c^{2} k^{2}-\omega^{2}\right) \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
& =0
\end{aligned}
$$

for non-trivial solutions with $\vec{E} \neq 0$, this requires $\omega^{2}=c^{2} k^{2}$, or vacuum dispersion relation

$$
\begin{equation*}
\omega=c k \tag{8}
\end{equation*}
$$

i.e., wave solutions require constant phase velocity $v_{\phi}=\omega / k=c$

Maxwell and Fourier Modes

We have seen: wave equation demands $\omega=c k$
But Maxwell equations impose further constraints
Consider arbitrary Fourier modes
$\vec{E}=E_{0} n e^{i(\vec{k} \cdot \vec{r}-\omega t)} \widehat{a}_{1}$, and $\vec{B}=B_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \widehat{a}_{2}$
Maxwell equations in vacuum impose conditions: for example, Coulomb's law $\nabla \cdot \vec{E}=0$ implies

$$
\begin{equation*}
\vec{k} \cdot \vec{E}=0 \tag{9}
\end{equation*}
$$

or equivalently $\widehat{n} \cdot \widehat{a}_{1}=0$
similarly, no monopoles requires

$$
\begin{equation*}
\vec{k} \cdot \vec{B}=0 \quad \hat{n} \cdot \hat{a}_{2}=0 \tag{10}
\end{equation*}
$$

Q: what does this mean physically for the waves?
we found $\vec{k} \cdot \vec{E}=\vec{k} \cdot \vec{B}=0$
\rightarrow propagation orthogonal to field vectors
\Rightarrow EM waves are transverse

Faraday's law requires $\omega \vec{B}=c \vec{k} \times \vec{E}$, or

$$
\begin{equation*}
\vec{B}=\frac{c \vec{k}}{\omega} \times \vec{E}=\hat{n} \times \vec{E} \tag{11}
\end{equation*}
$$

and Ampère's law gives $\vec{E}=-\hat{n} \times \vec{B}$

Q: what do these conditions imply for the waves?

Faraday's law gives $\vec{B}=\hat{n} \times \vec{E}$, so

$$
\begin{equation*}
\vec{E} \cdot \vec{B}=\vec{E} \cdot(\hat{n} \times \vec{E})=0 \tag{12}
\end{equation*}
$$

$\Rightarrow \vec{E}$ and \vec{B} are orthogonal to each other!

Faraday also implies

$$
\begin{equation*}
|B|^{2}=\widehat{n}^{2}|E|^{2}-|\hat{n} \cdot \vec{E}|^{2}=|E|^{2} \tag{13}
\end{equation*}
$$

using vector identity $(\hat{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\hat{a} \cdot \vec{c} \vec{b} \cdot \vec{d}-\hat{a} \cdot \vec{d} \vec{b} \cdot \vec{c}$
we have: $E_{0}=B_{0}$: field amplitudes are equal
which in turn means: $\hat{a}_{2}=\hat{n} \times \hat{a}_{1}$, and $\hat{a}_{1} \cdot \hat{a}_{2}=0$
$\downarrow \rightarrow\left(\hat{n}, \hat{a}_{1}, \hat{a}_{2}\right)$ form an orthogonal basis

Monochromatic Plane Wave: Time Averaging

at a given point in space, field amplitudes vary
sinusoidally with time \rightarrow energy density and flux also sinusoidal but we are interested in timescales $\gg \omega^{-1}$:
\rightarrow take time averages

Useful to use complex field amplitudes then take real part to get physical component
handy theorem: for $A(t)=\mathcal{A} e^{i \omega t}$ and $B(t)=\mathcal{B} e^{i \omega t}$
i.e., same time dependence, then time-averaged products

$$
\begin{equation*}
\langle\operatorname{Re} A(t) \operatorname{Re} B(t)\rangle=\frac{1}{2} \operatorname{Re}\left(\mathcal{A B}^{*}\right)=\frac{1}{2} \operatorname{Re}\left(\mathcal{A}^{*} \mathcal{B}\right) \tag{14}
\end{equation*}
$$

Monochromatic Plane Wave: Energy, Flux

time-averaged Poynting flux amplitude

$$
\begin{equation*}
\langle S\rangle=\frac{c}{8 \pi} \operatorname{Re}\left(E_{0} B_{0}^{*}\right)=\frac{c}{8 \pi}\left|E_{0}\right|^{2}=\frac{c}{8 \pi}\left|B_{0}\right|^{2} \tag{15}
\end{equation*}
$$

relates intensity and field strength
time-averaged energy density

$$
\begin{equation*}
\langle u\rangle=\frac{\left|E_{0}\right|^{2}}{8 \pi}=\frac{\left|B_{0}\right|^{2}}{8 \pi} \tag{16}
\end{equation*}
$$

and so $\langle\vec{S}\rangle=c\langle u\rangle \hat{n}$
Q: given wave direction \vec{n}, degrees of freedom in \vec{E}, \vec{B} ?

Polarization

EM waves propagating in a particular direction \widehat{n} must be transverse $\vec{k} \cdot \vec{E}=\hat{n} \cdot \vec{E}=0$
\rightarrow nonzero \vec{E} components lie in plane \perp to \widehat{n}
two independent components
for convenience: choose coordinates where $\hat{n}=\widehat{z}$
so fields are in transverse plane $x-y$ physical electric vector is real part of

$$
\begin{equation*}
\vec{E}=\left(E_{1} \widehat{x}+E_{2} \widehat{y}\right) e^{-i \omega t} \tag{17}
\end{equation*}
$$

complex amplitudes can be written

$$
\begin{equation*}
E_{1}=\mathcal{E}_{1} e^{i \phi_{1}} \quad E_{2}=\mathcal{E}_{2} e^{i \phi_{2}} \tag{18}
\end{equation*}
$$

Q: but wait-what about the magnetic field?
transverse electric field has two independent components but once \vec{E} determined, then $\vec{B}=\hat{n} \times \vec{E}$
at every point along sightline \hat{n}, magnetic \perp electric
\Rightarrow no additional degrees of freedom for \vec{B}
monochromatic plane wave has two independent components
consider plane at fixed $z=\hat{n} \cdot \vec{r}$, say $z=0$
imagine a detector in the plane, with $x-y$ axes
the two physical components of the \vec{E} field are independent, and evolve along the detector axes as

$$
\begin{equation*}
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right) \quad E_{y}=\mathcal{E}_{2} \cos \left(\omega t-\phi_{2}\right) \tag{19}
\end{equation*}
$$

In our $x-y$ detector plane, the independent \vec{E} field component sare:

$$
\begin{equation*}
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right) \quad E_{y}=\mathcal{E}_{2} \cos \left(\omega t-\phi_{2}\right) \tag{20}
\end{equation*}
$$

with E_{1}, E_{2} can take any values, and ϕ_{1}, ϕ_{2} independent but only difference $\phi_{1}-\phi_{2}$ can be important
\rightarrow a total of 3 independent parameters describe the fields
Q: \vec{E} time evolution if E_{1} and E_{2} can differ, but $\phi_{1}-\phi_{2}=0$?
Q : same but $\phi_{1}-\phi_{2}=\pi$?

Linear Polarization

For $\phi_{1}-\phi_{2}=0$, we have

$$
\begin{equation*}
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right) \quad E_{y}=\mathcal{E}_{2} \cos \left(\omega t-\phi_{1}\right)=\frac{\mathcal{E}_{2}}{\mathcal{E}_{1}} E_{x} \tag{21}
\end{equation*}
$$

fields share same sign and same sinusoidal time dependence \vec{E} sweeps out line with positive slope in $x-y$ plane \rightarrow linear polarization

For $\phi_{1}-\phi_{2}=\pi$, fields share time dependence but have opposite sign
\rightarrow linear polarization with negative slope
Q: what is \vec{E} time dependence if
$\mathcal{E}_{1}=\mathcal{E}_{2}$ but $\phi_{1}-\phi_{2}=\pi / 2 ?-\pi / 2$

Circular Polarization

if $\mathcal{E}_{1}=\mathcal{E}_{2}$ but $\phi_{1}-\phi_{2}=\pi / 2$

$$
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right) \quad E_{y}=\mathcal{E}_{1} \sin \left(\omega t-\phi_{1}\right)
$$

\vec{E} sweeps counterclockwise circle as seen approaching observer
\Rightarrow circular polarization
Engineering: "lefthanded" circular polarization \rightarrow but using righthand rule: positive helicity

if $\mathcal{E}_{1}=\mathcal{E}_{2}$ but $\phi_{1}-\phi_{2}=-\pi / 2$
\rightarrow "righthand" circular polarization, or negative helicity
\leftrightarrows in the most general case: $\mathcal{E}_{1} \neq \mathcal{E}_{2}$ and $\phi_{1}-\phi_{2}$ arbitrary Q : what is \vec{E} time dependence?

Elliptical Polarization

in the general case

$$
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right) \quad E_{y}=\mathcal{E}_{2} \cos \left(\omega t-\phi_{2}\right)
$$

intuitively, blends linear and circular features:
\rightarrow elliptical polarization

ellipse orientation fixed by $\mathcal{E}_{1}-\mathcal{E}_{2}$ difference ellipse eccentricity and helicity fixed by $\phi_{1}-\phi_{2}$ difference
in coordinates $\left(x^{\prime}, y^{\prime}\right)$ rotated to align with principal axes

$$
E_{x}^{\prime}=\mathcal{E}_{0} \cos \beta \cos (\omega t) \quad E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin (\omega t)
$$

$\stackrel{H}{G}$ for some $\beta \in[-\pi / 2,+\pi / 2]$
Q: evolution if $\beta>0$?

$$
E_{x}^{\prime}=\mathcal{E}_{0} \cos \beta \cos (\omega t) \quad E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin (\omega t)
$$

principle axes: $\mathcal{E}_{0} \cos \beta$ and $\mathcal{E}_{0} \sin \beta$
if $\beta \in[0, \pi / 2]$: ellipse sweeps clockwise
\rightarrow "righthanded" elliptical polarization, negative helicity
if $\beta \in[-\pi / 2,0]$: "lefthanded", positive helicity

Q: what $\beta(s)$ give complete linear polarization? circular?
we want to relate $x-y$ field parameters $\mathcal{E}_{1}, \mathcal{E}_{2}, \phi_{1}, \phi_{2}$
to $x^{\prime}-y^{\prime}$ principle axes parameters $\mathcal{E}_{0}, \beta, \chi$
rotate $x-y$ components by angle χ
$E_{x}=\mathcal{E}_{0}(\cos \beta \cos \chi \cos \omega t+\sin \beta \sin \chi \sin \omega t)$
$E_{y}=\mathcal{E}_{0}(\cos \beta \sin \chi \cos \omega t-\sin \beta \cos \chi \sin \omega t)$
matching to, e.g., $E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right)$:

$$
\begin{align*}
\mathcal{E}_{1} \cos \phi_{1} & =\mathcal{E}_{0} \cos \beta \cos \chi \tag{22}\\
\mathcal{E}_{1} \sin \phi_{1} & =\mathcal{E}_{0} \sin \beta \sin \chi \tag{23}\\
\mathcal{E}_{2} \cos \phi_{2} & =\mathcal{E}_{0} \cos \beta \sin \chi \tag{24}\\
\mathcal{E}_{2} \sin \phi_{2} & =-\mathcal{E}_{0} \sin \beta \cos \chi \tag{25}
\end{align*}
$$

$\stackrel{\rightharpoonup}{v}$
Q: how can we determine polarization by intensity measurements with a polarimeters?

Introduce polarizer
can rotate polarizer:
\rightarrow measure I_{x}, I_{y}, and 45° rotated $I_{x^{\prime}}, I_{y^{\prime}}$
can use circular polarizers to measure
\rightarrow positive and negative circular polarization I_{+}, I_{-}

combine: Stokes parameters

$$
\begin{align*}
I & =I_{x}+I_{y} \tag{26}\\
Q & =I_{x}-I_{y} \tag{27}\\
U & =I_{x^{\prime}}-I_{y^{\prime}} \tag{28}\\
V & =I_{+}-I_{-} \tag{29}
\end{align*}
$$

Q: what physically is each? can more than one of Q, U, V be nonzero? what does that correspond to?
Q : range of values for Q ? U ? V ? are they all independent?

Stokes Parameters

for monochromatic waves, Stokes parameters related to $\mathcal{E}_{1}, \mathcal{E}_{2}, \phi_{1}, \phi_{2}$ and $\mathcal{E}_{0}, \beta, \chi$ bases:

$$
\begin{align*}
I & =\mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}=\mathcal{E}_{0}^{2} \tag{30}\\
Q & =\mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}=\mathcal{E}_{0}^{2} \cos 2 \beta \cos 2 \chi \tag{31}\\
U & =2 \mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)=\mathcal{E}_{0}^{2} \cos 2 \beta \sin 2 \chi \tag{32}\\
V & =2 \mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)=\mathcal{E}_{0}^{2} \sin 2 \beta \tag{33}
\end{align*}
$$

and thus

$$
\begin{align*}
\mathcal{E}_{0} & =\sqrt{I} \tag{34}\\
\sin 2 \beta & =V / I \tag{35}\\
\tan 2 \chi & =U / Q \tag{36}
\end{align*}
$$

since wave has 3 independent parameters,
Stokes parameters must be related

$$
\begin{equation*}
I^{2}=Q^{2}+U^{2}+V^{2} \tag{37}
\end{equation*}
$$

Quasi-Monochromatic Waves

natural light generally not a pure monochromatic wave with a single, definite, complete state of polarization
rather: a superposition of components with many polarizations
consider wave with slowly varying amplitudes and phases

$$
\begin{equation*}
E_{1}(t)=\mathcal{E}_{1}(t) e^{i \phi_{1}(t)} ; \quad E_{2}(t)=\mathcal{E}_{2}(t) e^{i \phi_{2}(t)} \tag{38}
\end{equation*}
$$

"slow": wave looks completely polarized on timescalse ω^{-1} but amplitudes and phases drift over intervals $\Delta t \gg \omega^{-1}$
\rightarrow polarization changes
but also wave is no longer monochromatic frequency spread: "bandwidth" $\Delta \omega \sim 1 / \Delta t \ll \omega$

Q: effect on Stokes?

Stokes Parameters for Quasi-Monochromatic Light

real measurements represent averages over timescales during which polarization can change

Stokes parameters become averages

$$
\begin{align*}
I & =\left\langle E_{1} E_{1}^{*}\right\rangle+\left\langle E_{2} E_{2}^{*}\right\rangle=\left\langle\mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}\right\rangle \tag{39}\\
Q & =\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle=\left\langle\mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}\right\rangle \tag{40}\\
U & =\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle=2\left\langle\mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right\rangle \tag{41}\\
V & =-i\left(\left\langle E_{1} E_{2}^{*}\right\rangle-\left\langle E_{2} E_{1}^{*}\right\rangle\right)=2\left\langle\mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)\right\rangle \tag{42}
\end{align*}
$$

but for quasi-monochromatic waves

$$
\begin{equation*}
I^{2} \geq Q^{2}+U^{2}+V^{2} \tag{43}
\end{equation*}
$$

\sim - quasi-monochromatic polarization is still in general elliptical

- but drifts can reduce degree of polarization

$$
\begin{equation*}
I^{2} \geq Q^{2}+U^{2}+V^{2} \tag{44}
\end{equation*}
$$

- maximum polarization when equality holds:
completely elliptically polarized
- minimum when $Q=U=V=0$: unpolarized
- arbitrary wave is partially polarized
useful to define polarized intensity

$$
\begin{equation*}
I_{\mathrm{pol}}=Q^{2}+U^{2}+V^{2} \tag{45}
\end{equation*}
$$

and since $I_{\text {pol }} \leq I$, define fractional degree of polarization

$$
\begin{equation*}
\Pi \equiv \frac{I_{\mathrm{pol}}}{I}=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I} \tag{46}
\end{equation*}
$$

note: can always decompose Stokes parameters

$$
\left(\begin{array}{c}
I \tag{47}\\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
I-I_{\mathrm{pol}} \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
I_{\mathrm{pol}} \\
Q \\
U \\
V
\end{array}\right)
$$

sum of unpolarized and polarized components

Superposition and Stokes

consider composite wave that is superposition of many independent waves
electric field components are given by superposition

$$
\begin{equation*}
E_{1}=\sum_{k} E_{1}^{(k)} \quad ; \quad E_{2}=\sum_{k} E_{1}^{(k)} \tag{48}
\end{equation*}
$$

each term k of which has different phase

PS4: phases specified, can calculate sum explicitly
but generally, phases are random so field products average out phases from different waves

$$
\begin{equation*}
\left\langle E_{i} E_{j}^{*}\right\rangle=\sum_{k} \sum_{\ell}\left\langle E_{i}^{(k)} E_{j}^{(\ell) *}\right\rangle=\sum_{k}\left\langle E_{i}^{(k)} E_{i}^{(k) *}\right\rangle \tag{49}
\end{equation*}
$$

but due to this averaging, Stokes parameters are additive

$$
\begin{align*}
I & =\sum_{k} I^{(k)} \tag{50}\\
Q & =\sum_{k} Q^{(k)} \tag{51}\\
U & =\sum_{k} U^{(k)} \tag{52}\\
V & =\sum_{k} V^{(k)} \tag{53}
\end{align*}
$$

