Astro 501: Radiative Processes
 Lecture 13
 Sept. 26, 2018

Announcements:

- Problem Set 4 due Friday
note: blackbody fit to real data will not be perfect!

Last time: monochromatic plane waves
Q: what's that? properties?
Q: polarization specail cases? general case?

$$
E_{x}^{\prime}=\mathcal{E}_{0} \cos \beta \cos (\omega t) \quad E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin (\omega t)
$$

principle axes: $\mathcal{E}_{0} \cos \beta$ and $\mathcal{E}_{0} \sin \beta$
if $\beta \in[0, \pi / 2]$: ellipse sweeps clockwise
\rightarrow "righthanded" elliptical polarization, negative helicity
if $\beta \in[-\pi / 2,0]$: "lefthanded", positive helicity

Q: what $\beta(\mathrm{s})$ give complete linear polarization? circular?
we want to relate $x-y$ field parameters $\mathcal{E}_{1}, \mathcal{E}_{2}, \phi_{1}, \phi_{2}$
to $x^{\prime}-y^{\prime}$ principle axes parameters $\mathcal{E}_{0}, \beta, \chi$
rotate $x-y$ components by angle χ
$E_{x}=\mathcal{E}_{0}(\cos \beta \cos \chi \cos \omega t+\sin \beta \sin \chi \sin \omega t)$
$E_{y}=\mathcal{E}_{0}(\cos \beta \sin \chi \cos \omega t-\sin \beta \cos \chi \sin \omega t)$
matching to, e.g., $E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right)$:

$$
\begin{align*}
\mathcal{E}_{1} \cos \phi_{1} & =\mathcal{E}_{0} \cos \beta \cos \chi \tag{1}\\
\mathcal{E}_{1} \sin \phi_{1} & =\mathcal{E}_{0} \sin \beta \sin \chi \tag{2}\\
\mathcal{E}_{2} \cos \phi_{2} & =\mathcal{E}_{0} \cos \beta \sin \chi \tag{3}\\
\mathcal{E}_{2} \sin \phi_{2} & =-\mathcal{E}_{0} \sin \beta \cos \chi \tag{4}
\end{align*}
$$

Q: how can we determine polarization by intensity measurements with a polarimeters?

Introduce polarizer
can rotate polarizer:
\rightarrow measure I_{x}, I_{y}, and 45° rotated $I_{x^{\prime}}, I_{y^{\prime}}$
can use circular polarizers to measure
\rightarrow positive and negative circular polarization I_{+}, I_{-}

combine: Stokes parameters

$$
\begin{align*}
I & =I_{x}+I_{y} \tag{5}\\
Q & =I_{x}-I_{y} \tag{6}\\
U & =I_{x^{\prime}}-I_{y^{\prime}} \tag{7}\\
V & =I_{+}-I_{-} \tag{8}
\end{align*}
$$

Q: what physically is each? can more than one of Q, U, V be nonzero? what does that correspond to?
Q : range of values for Q ? U ? V ? are they all independent?

Stokes Parameters

for monochromatic waves, Stokes parameters related to $\mathcal{E}_{1}, \mathcal{E}_{2}, \phi_{1}, \phi_{2}$ and $\mathcal{E}_{0}, \beta, \chi$ bases:

$$
\begin{align*}
I & =\mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}=\mathcal{E}_{0}^{2} \tag{9}\\
Q & =\mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}=\mathcal{E}_{0}^{2} \cos 2 \beta \cos 2 \chi \tag{10}\\
U & =2 \mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)=\mathcal{E}_{0}^{2} \cos 2 \beta \sin 2 \chi \tag{11}\\
V & =2 \mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)=\mathcal{E}_{0}^{2} \sin 2 \beta \tag{12}
\end{align*}
$$

and thus

$$
\begin{align*}
\mathcal{E}_{0} & =\sqrt{I} \tag{13}\\
\sin 2 \beta & =V / I \tag{14}\\
\tan 2 \chi & =U / Q \tag{15}
\end{align*}
$$

since wave has 3 independent parameters,
Stokes parameters must be related

$$
\begin{equation*}
I^{2}=Q^{2}+U^{2}+V^{2} \tag{16}
\end{equation*}
$$

Quasi-Monochromatic Waves

natural light generally not a pure monochromatic wave with a single, definite, complete state of polarization
rather: a superposition of components with many polarizations
consider wave with slowly varying amplitudes and phases

$$
\begin{equation*}
E_{1}(t)=\mathcal{E}_{1}(t) e^{i \phi_{1}(t)} ; \quad E_{2}(t)=\mathcal{E}_{2}(t) e^{i \phi_{2}(t)} \tag{17}
\end{equation*}
$$

"slow": wave looks completely polarized on timescalse ω^{-1} but amplitudes and phases drift over intervals $\Delta t \gg \omega^{-1}$
\rightarrow polarization changes
but also wave is no longer monochromatic
frequency spread: "bandwidth" $\Delta \omega \sim 1 / \Delta t \ll \omega$
$\sigma \rightarrow$ quasi-monochromatic wave
Q: effect on Stokes?

Stokes Parameters for Quasi-Monochromatic Light

real measurements represent averages over timescales during which polarization can change

Stokes parameters become averages

$$
\begin{align*}
I & =\left\langle E_{1} E_{1}^{*}\right\rangle+\left\langle E_{2} E_{2}^{*}\right\rangle=\left\langle\mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}\right\rangle \tag{18}\\
Q & =\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle=\left\langle\mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}\right\rangle \tag{19}\\
U & =\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle=2\left\langle\mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right\rangle \tag{20}\\
V & =-i\left(\left\langle E_{1} E_{2}^{*}\right\rangle-\left\langle E_{2} E_{1}^{*}\right\rangle\right)=2\left\langle\mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)\right\rangle \tag{21}
\end{align*}
$$

but for quasi-monochromatic waves

$$
\begin{equation*}
I^{2} \geq Q^{2}+U^{2}+V^{2} \tag{22}
\end{equation*}
$$

- quasi-monochromatic polarization is still in general elliptical
- but drifts can reduce degree of polarization

$$
\begin{equation*}
I^{2} \geq Q^{2}+U^{2}+V^{2} \tag{23}
\end{equation*}
$$

- maximum polarization when equality holds:
completely elliptically polarized
- minimum when $Q=U=V=0$: unpolarized
- arbitrary wave is partially polarized
useful to define polarized intensity

$$
\begin{equation*}
I_{\mathrm{pol}}=Q^{2}+U^{2}+V^{2} \tag{24}
\end{equation*}
$$

and since $I_{\text {pol }} \leq I$, define fractional degree of polarization

$$
\begin{equation*}
\Pi \equiv \frac{I_{\mathrm{pol}}}{I}=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I} \tag{25}
\end{equation*}
$$

note: can always decompose Stokes parameters

$$
\left(\begin{array}{c}
I \tag{26}\\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
I-I_{\mathrm{pol}} \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
I_{\mathrm{pol}} \\
Q \\
U \\
V
\end{array}\right)
$$

sum of unpolarized and polarized components

Superposition and Stokes

consider composite wave that is superposition of many independent waves
electric field components are given by superposition

$$
\begin{equation*}
E_{1}=\sum_{k} E_{1}^{(k)} \quad ; \quad E_{2}=\sum_{k} E_{1}^{(k)} \tag{27}
\end{equation*}
$$

each term k of which has different phase

PS4: phases specified, can calculate sum explicitly
but generally, phases are random so field products average out phases from different waves

$$
\begin{equation*}
\left\langle E_{i} E_{j}^{*}\right\rangle=\sum_{k} \sum_{\ell}\left\langle E_{i}^{(k)} E_{j}^{(\ell) *}\right\rangle=\sum_{k}\left\langle E_{i}^{(k)} E_{i}^{(k) *}\right\rangle \tag{28}
\end{equation*}
$$

but due to this averaging, Stokes parameters are additive

$$
\begin{align*}
I & =\sum_{k} I^{(k)} \tag{29}\\
Q & =\sum_{k} Q^{(k)} \tag{30}\\
U & =\sum_{k} U^{(k)} \tag{31}\\
V & =\sum_{k} V^{(k)} \tag{32}
\end{align*}
$$

How Do Charges Generate Radiation

Thus far: vacuum Maxwell solutions support EM waves

- speed c
- transverse
- $\vec{B}=\vec{n} \times \vec{E}$

Maxwell sources are charges and currents

But how do sources generate radiation?
Strategy: study point charge, then superpose

Consider a point charge at rest
ㄱ Q: what are ρ, \vec{j} everywhere? \vec{E}, \vec{B} everywhere?

A Point Charge at Rest

Consider a point charge q at rest at origin $\vec{r}=0$
charge density $\rho=q \delta(\vec{r})$
current density $\vec{j}=\rho \vec{v}=0$
Gauss' Law: $\nabla \cdot \vec{E}=4 \pi \rho$
Spherical symmetry: $\vec{E}=E(r) \hat{r}$
Gauss' Theorem applied to sphere enclosing charge:

$$
\begin{align*}
\int \nabla \cdot \vec{E} d V & =\int \vec{E} \cdot d \vec{A} \int E d A=4 \pi r^{2} E \tag{33}\\
& =4 \pi \int \rho d V=4 \pi q \tag{34}\\
E(r) & =\frac{q}{r^{2}} \tag{35}
\end{align*}
$$

Coulomb's Law!
$\stackrel{\rightharpoonup}{\omega}$ and $\vec{j}=0$ means $\vec{B}=0$: no magnetic field
Q: how can things change if the charge moves?

An Accelerated Point Charge

consider a particle rapidly decelerated from speed v to rest over time δt
initial position
"expected" position at
-
ct
stopped at δt
consider a later time $t \gg \delta t$
Q : field configuration near particle ($r \ll c t$) ?
Q : field configuration near particle ($r \gg c t$)?
Q : consequences?
for fields track particle location expected for constant velocity

- nearby: $r \ll c t$, fields radial around particle at rest
- far away: $r \gg c t$: fields don't "know" particle has stopped \rightarrow "anticipate" location displaced by ct from original particle radially oriented around this expected point
between the two regimes: $r=c t \pm c \delta t$ field lines must have "kinks" which
- have tangential field component
- tangential component is anisotropic and largest $\perp \vec{v}$

consider vertical fieldline $\perp \vec{v}$:
kink radial width $c \delta t$
kink tangential width $v t=(v / c) r$
tangential/radial ratio is $(v / \delta t) r / c^{2}$ but $v / \delta t=a$, average acceleration:
$\rightarrow E_{\perp} / E_{r}=a r / c^{2}$

more generally, tangential width is
$v t \sin \Theta=(v / c) r \sin \Theta$
and so using Coulomb for E_{r} :

$$
\begin{equation*}
E_{\perp}=\frac{a r \sin \Theta}{c^{2}} E_{r}=\frac{q a}{c^{2} r} \sin \Theta \tag{36}
\end{equation*}
$$

this is huge! Q : why?
↔ Q : relation to radiated flux?

We find acceleration leads to a propagating field perturbation that is tangential $=$ transverse!
just what we expect for EM radiation
so we expect also a transverse \vec{B} component, with

$$
\begin{equation*}
B_{\perp}=E_{\perp}=\frac{a r \sin \Theta}{c^{2}} E_{r}=\frac{q a}{c^{2} r} \sin \Theta \tag{37}
\end{equation*}
$$

and thus a radial Poynting vector with magnitude

$$
\begin{equation*}
S=\frac{c}{4 \pi} E_{\perp}^{2}=\frac{q^{2} a^{2}}{4 \pi c^{3} r^{2}} \sin ^{2} \Theta \tag{38}
\end{equation*}
$$

this is also huge! Q : why?

Q: total radiated power per solid angle?

Larmor Formula

Poynting flux:

$$
\begin{equation*}
S=\frac{c}{4 \pi} E_{\perp}^{2}=\frac{q^{2} a^{2}}{4 \pi c^{3} r^{2}} \sin ^{2} \Theta \tag{39}
\end{equation*}
$$

- scales as $S \propto 1 / r^{2}!$ as it must!
- note importance of $E_{\perp} \propto 1 / r$ scaling

Total power into solid angle $d \Omega$: $d P=r^{2} S d \Omega$ so power per solid angle

$$
\begin{equation*}
\frac{d P}{d \Omega}=r^{2} S=\frac{c r^{2} E_{\perp}^{2}}{4 \pi}=\frac{q^{2} a^{2}}{4 \pi c^{3}} \sin ^{2} \Theta \tag{40}
\end{equation*}
$$

Larmor Formula for Radiated power
\star_{∞} Q: lessons from magnitude? direction?

Larmor:

$$
\begin{equation*}
\frac{d P}{d \Omega}=r^{2} S=\frac{c r^{2} E_{\perp}^{2}}{4 \pi}=\frac{q^{2} a^{2}}{4 \pi c^{3}} \sin ^{2} \Theta \tag{41}
\end{equation*}
$$

- magnitude $P \propto a^{2}$: accelerated charges radiate
- direction: $d P / d \Omega \propto \sin ^{2} \Theta$
not isotropic!
maximum orthogonal to accleration
zero along acceleration

