Astro 501: Radiative Processes
Lecture 14
Sept. 28, 2018

Announcements:
e Problem Set 4 due now
e Problem Set 5 due next Friday

Last time:
e polarization
e Moving charges



Electrodynamics of Moving Charges: Strategy

R

point charge q:
position R(t)
velocity v = R Bc

=3 - - n
and acceleration @ = R = c df/dt = ¢f3 position at t

\'

Maxwell sources:
charge density p(%) = q §(Z — R), current density j = p&

Procedure (see R&L and Extras for more):

0. Use full Special Relativity

1. write EM fields as derivatives of 4-potential (¢, A)

2. Maxwell — 2nd-order equations 82potential — source
3. solve for fields given above source terms



Electrodynamics of Moving Charges: Results

A careful calculation, and a lot of algebra, gives
an exact formula for the field of a moving point charge

B0 =o[*=55 2 425 {e-m )

k3 R2 C

where k =1 —n-f
and ‘“ret” = particle position at retarded time
tret =t — R/c

positionat t,, | ' .
Vo position at t

form is rich = complicated, but also complete and exact!

» depends on charge position, velocity, and acceleration



for electric field

Re

position at t,, | .
Vo position at t

Q: E result for charge at rest? B?
Q: E for charge with with constant velocity?
Q: result at large R?



Electric “Velocity” Field

point source first term = *“velocity field”
S (7 — B - B?)
E(R,t — 1
( >vel QI KJQRQ ot ( )

e depends only on position and velocity
evaluated at a past location of the particle
e velocity field not isotropic if particle moving

displacement from retarded position }?(tret)
to the field position B is fic(t — tret)
to the current particle position Be(t — tyet)
so E points to current position!
9 — legal? yes! velocity constant, trajectory always “available”



Electric Acceleration Field

electric velocity field o« 1/R?
but other acceleration term o< vg

—~

E(R, accel = g [# 8 {(ﬁ — ) x B} ret

drops with distance « 1/R: always larger at large R

for nonrelativistic motion, g = vg/c K 1,
and so to first order
2B q _. ~ -
E(R,t)accel ® | 551 X (1 X @)

c’R ret

a huge result!

Q). If acceleration is linear, what is polarization?

(2)

(3)
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at large distances

E(R,t) — E(R,t)accel © QLﬁ X (n X a@)
c R ret

instantaneous E direction set by @ and 7

if acceleration is linear — a fixed
then E lies within (n,a) plane — 100% linearly polarized

—

using B — 7 X Eaccel, the Poynting flux is

2 L2
S~ — n = nx(nxpg ‘
accel Arc3R2 ( )

4>

Q. noteworthy features?

(4)

(5)



the Poynting flux is

— q2 > 2
S =~ n X (n X | 6
157 7% (X B) (6)
S Rr_e%: flux obeys inverse square law!

Power per unit solid angle is

dP

-, 12
P 2~ _’Ni o 2 _ q n n 3
o R°n - S~ 47T‘REacceI‘ T 43 'n x (0 X ﬁ)| (7)

independent of distance! Q: why did this have to be true?

2

Q: in which directions is dP/dS2 largest? smallest?
Q. radiation pattern?



Larmor Formula

Nonrelativistic charges radiate when accelerated!
Power per unit solid angle is

ar g2
dQ  4nc3
define angle © between @ and n via n - 3 = cos ©O:

dP  q%a® . 5
— Sin© ©
dS? A3 n[© 4

.12
ﬁx(ﬁxﬁ)‘

a sin? ® pattern!

— no radiation in direction of acceleration, maximum L a
integrate over all solid angles: total radiated power is

2 2 2
2
p=2¢ /sinQ@dsz:— 9 o2 (8)
3 3

A3
this will be our workhorse!
relates radiation to particle acceleration via P «< a

2
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An Accelerated Point Charge

consider a particle rapidly decelerated from speed v to rest
over time ot

Initial position , "expected"” position at
O~ @ O ct

stopped at ot

consider a later time t > 6t

Q: field configuration near particle (r < ct) 7

Q: field configuration near particle (r > ct )7
Q. consequences?



T

for fields track particle location expected for constant velocity

e Nnearby: r K ct, fields radial around particle at rest

e far away: r > ct: fields don’t “know’ particle has stopped
— “anticipate” location displaced by c¢t from original particle
radially oriented around this expected point

between the two regimes: r = ct &+ cdt
field lines must have “kinks” which
e have tangential field component
e tangential component is anisotropic
N width
and largest 1 v ct cot




consider vertical fieldline 1 v:
kKink radial width cdt
Kink tangential width vt = (v/c)r

tangential/radial ratio is (v/6t)r/c?
but v/6t = a, average acceleration:
— E| /By = ar/c?

more generally, tangential width is
vtsin © = (v/c)rsin ©

with angle © between a and n
and so using Coulomb for Ej:

Sin ©
EL:GJT 5 Er:ﬂsin@ (9)

C C2’l“

this is huge! @Q: why?
Q. relation to radiated flux?

=
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We find acceleration leads to a propagating field perturbation
that is tangential = transverse!
just what we expect for EM radiation

—

SO we expect also a transverse B component, with

arsin® 49 g g (10)

62 " CQT
and thus a radial Poynting vector with magnitude

2 2
s="p2=9% qn20 (11)

%y L Aqe3r2

BJ_:EJ_:
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An Ensemble of Point Charges

Note: existence of kink and thus of radiation

demanded by combination of

e Gauss’' law (field lines not created or destroyed in vacuum)
e finite propagation speed ¢

So far: field of a single point charge _
Now: consider N particles, with ¢;, R;, ©; = R;

Net E will be sum over all particles
Q. complications beyond ‘“simple” bookkeeping?
Q. when will things simplify?
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Approximate Phase Coherence

fields for each charge depend on it's retarded time

and these are different for each charge

— |leads to phase differences between particles
which we in general would have to track

When are phase differences not a problem?
When light-travel-time lags between particles
represent small phase differences



2

et system size be L, and timescale for variations 7
if 7> L/c, phase differences will be small

or: characteristic frequency is v ~ 1/7
so phase differences small if ¢/v > L, or A > L
note that typical particle speeds u ~ L/7, SO
=~ phase coherence condition — u < ¢ — nonrelativistic motion



A

Dipole Approximation

so for non-relativistic systems we may ignore
e differences in time retardation, and
e the correction factor k =1—-n-v/c— 1
and thus we have
g nx(nxda;)
- c? R;

but the system has R; =~ Rg > L, and so

Eyaq =

. R 7 . A x (A x d)
Erag = n X (CQRO X Qiai) =

where the dipole moment is

(12)
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for a non-relativistic dipole, we have

o nx(nxd)
E o
rad CQRO
this dipole approximation gives: power per unit solid angle
dP d
— = sin? ©
dS? A3

and the total power radiated

P 2 d°
dQ 3 3

(15)

(16)

(17)
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consider a dipole that maintains the same orientation d

B() = i

using Fourier transform of d(¢), we have

d(t) = / e~ (W) duw

and so
Sin ©
Elw) = —de(w) 2p
0
and thus the energy per solid angle and frequency is
dW 1
e |d(w)) sin? ©
dQdw 3
and
aw 3
St @)
dw 3c

e note the w* o« A% dependence

(18)

(19)

(20)

(21)

(22)

e and d(w): dipole frequencies control radiation frequencies
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Director’'s Cut Extras
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The Vector Potential

No-molopoles condition V - B
strongly restricts B configurations

condition automatically satisfied if we write
B=VxA
guarantees zero divergence because, for any A
V- (VxA)=0

where A is the vector potential
Q. units of A7

(23)

(24)
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write Faraday’s law in terms of A:

— 1 —
VxE=—0(VxA)
C
and so
— 1 —
V x (E—I——atA) —0
C
strongly restricts E configurations
Q. how to automatically satisfy?

(25)

(26)
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The Scalar Potential
Faraday with A
V x (E + %atﬁ) =0 (27)
vector field £ + 19,4 is curl-free

to automatically satisfy this, note that

V x (Vo) =0 (28)
curl of grad vanishes for any scalar field (=function) ¢

define scalar potential via

— 1 —
E=-V¢——-0A (29)
C
Q. units of ¢7

Q: are A and ¢ unique? why?
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Gauge Freedom

vector potential defined to give Vx A = B
clearly if A — A’ = A+ constant, B — B
= physical field unchanged

in fact: B unchanged for any transformation
A — A’ which preserves V x A’ = B:

V x (A —A) =0
and thus there is no physical change if
Al = A+ Vy

because V x (Vi) = 0 for any ¢
— gauge invariance

Q. what condition needed to keep E unchanged?

(30)

(31)
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Gauge Invariance
the physical electric field has
— 1 —
E=-V¢——-0A
C

and must remain the same when A — A + V)

but we have

= - 1 -
E —> FE = —V¢—;8tA’

v (64 -0w) — oA

Q. and so7’

(32)

(33)

(34)
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FoFE = v <¢ n —aﬂb) _ZpA
C C
and so to keep E' = E requires

1
<W+W=¢—;@¢

the E,é preserving mappings
(¢, A) — (¢, A) + (B /c, V)

IS a gauge transformation

a deep but also annoying property of electromagnetism
for our purposes, a useful but not unique choice

L1
V-A4+-0,6=0
C

“Lorentz gauge”

(35)

(36)

(37)

(38)
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Maxwell Revisited

express Maxwell in terms of potentials: Coulomb

1 - 1 R

_v. (V¢ _ —&gA) — V26— 29,V - A)
C C
= 4mpg
and so in Lorentz gauge
1
V¢ — C_Qatqu = —4mpq

scalar potential satisfies a wave equation!
@ source is charge density pq
changes in ¢ propagate at speed c

for static situation 0;¢ = 0, Poisson Vng = —4mpq, and

Pq("ﬂ)
|7 — 7]

b () = / 437

Q). solution for full wave equation?

(39)
(40)

(41)

(42)



Scalar Potential and Retarded Time

general solution to

1
V26— 5076 = —4mpg (43)

turns out to be
— t/
o) = [ P = [ 3 [f"’ q] (44)
17— 7] 17— 7 et

where source density pq(7,t)
IS evaluated at retarded time

t' = [tret]l =t — (45)

C
— ¢ “learns” about changes in charge density at +
» only after signal propagation time ctprop = ||
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Maxwell and the Vector Potential

in terms of potentials, Ampeéere in Cartesian coords:

Vx(VxA = V2A-— V(V-/Y) (46)
4 S
= 7+ (Vo+ad) (47)
so in Lorentz gauge
= 1 = 47,
V24 — C—QaEA — —%j (48)

vector potential also satisfies a wave equation
source is current density j

Q). solution?



each component A; of vector potential satisfies

1

V2A; — =07 A; = ——Ji (49)

formally identical to scalar potential equation
if we put ¢ — A; and pg — j;/c

and thus we can import the solution:

A;(rt) = /d377, |_,/jz _1] (50)
= Tlret

— vector potential responds to current changes
after “retarded time” delay

Integral solutions for ¢ and A are huge!
& @Q: why? what’s the Big Deal?
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Recipe for Electromagnetic Fields

our mission: find E(7,t) and B(7,t)
given charge pq(7,t) and current 7(7,t) distributions

solution: first find potentials via

/d37;»' _qu _’]
_|?" —7“| ret

A7) = /d3f" 717 — 7]

¢(7,t)

ret
from these, find fields via

— 1 —

EFE = —V¢——-0A
C

V X A

ol
|

ta da!

(51)

(52)

(53)
(54)
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in the 3-D spatial integrals

b(7 1) = —/d3fF" [ Pq q]
ret

7 =7

it is convenient (and pretty!) to recast as
integrals over 4-D spacetime:

—y
O(7 1) = —/d3f’ g PATL) gy 7 — 7| /c)

were the § function enforces the retarded time condition

Q: What if charges are all pointlike?

(55)

(56)
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Potentials from Point Charges

if N point charges, where ith charge g; has trajectory with
position 7;(t), and velocity v;(t), then

pg(Ft) = 3 q; 63 (7= 7) (57)
iFt = S g vt) 63 (F—7) (58)
with Dirac é-functions 6 (7 — 7)) = §(z — x;) §(y — ;) 6(z — 2;)

scalar potential due to one charge with qg, 79(t), vg(t) is

Bz _ =
&(7,1) = qo / B ar (|; . ;Io(t))

space part of integral is easy

B(7.1) = qo [ dt il

o(t' —t+ |7 =7|/c) (59)

t' —t+ |7 —7o(t)]/c)
|7 — o (t')]

(60)
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writing R(t) = 7 — 7o ()
and R(t') = |R(t")|, we have

and now the final § function is nontrivial

(61)

math aside: fun properties of the § function
d(x) designed to give

[ 1@) 6y~ ) dy = (=) (62)

but if § argument is a function of the integration variable

/f(y) §(g(z)) dy= > flg(zj))

roots; |dg/dx|g;j
where root z; is the jth solution to y — g(z) =0

(63)

here: define t” =t —t+ R(t)/c
then dt’' = dt' + R(t")/c dt’
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Liénard-Wiechert Potentials

for point source with arbitrary trajectory, we have

. 1 q0
)=
P 1) 1 —n-Bo(tret) R

where n = 7/r and Bo(t) = vp(t)/c

similarly, vector potential solution is

R 1 vo (7, t
A7 t) = _ C]O”O("“a ret)
1 —7-Boltret) R(tret)
these are the Liénard-Wiechert potentials

Q. equipotential surfaces ¢ = const for
stationary charge 7o(t) = const?

Q). for charge with vy larger

Q. implications?

(64)

(65)
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potential factor k = [1 — 7. - Byet IS

e directional,

e velocity dependent, such that

e potential x 1/x enhanced along direction of charge motion
and potential suppressed opposite direction of charge motion

= expect forward “beaming’ effects!

But we want the EM fields, not just potentials,
SO we need to evaluate

— —

1
E = —V¢—-8A (66)
C

B = VxA (67)

using the beautiful Liénard-Wiechert point-source potentials
where, ¢ = ¢[F,t; 7o(t), To(t)] and A = A[F,t; 7o (t), o(t)]

Q. what terms will appear in E?



