Astro 501: Radiative Processes
 Lecture 14
 Sept. 28, 2018

Announcements:

- Problem Set 4 due now
- Problem Set 5 due next Friday

Last time:

- polarization
- moving charges

Electrodynamics of Moving Charges: Strategy

point charge q :
position $\vec{R}(t)$
velocity $\vec{v}=\dot{\vec{R}}=\vec{\beta} c$
and acceleration $\vec{a}=\ddot{\vec{R}}=c d \vec{\beta} / d t=c \dot{\vec{\beta}}$

Maxwell sources:
charge density $\rho(\vec{x})=q \delta(\vec{x}-\vec{R})$, current density $\vec{j}=\rho \vec{v}$

Procedure (see R\&L and Extras for more):
0. Use full Special Relativity

1. write EM fields as derivatives of 4-potential (ϕ, \vec{A})
2. Maxwell \rightarrow 2nd-order equations ∂^{2} potential $=$ source
3. solve for fields given above source terms

Electrodynamics of Moving Charges: Results

A careful calculation, and a lot of algebra, gives an exact formula for the field of a moving point charge

$$
\vec{E}(\vec{R}, t)=q\left[\frac{(\hat{n}-\vec{\beta})\left(1-\beta^{2}\right)}{\kappa^{3} R^{2}}\right]_{\mathrm{ret}}+\frac{q}{c}\left[\frac{\hat{n}}{\kappa^{3} R} \times\{(\hat{n}-\vec{\beta}) \times \dot{\vec{\beta}}\}\right]_{\mathrm{ret}}
$$

where $\kappa=1-\hat{n} \cdot \hat{\beta}$
and "ret" $=$ particle position at retarded time
$t_{\text {ret }}=t-R / c$

form is rich $=$ complicated, but also complete and exact! depends on charge position, velocity, and acceleration
for electric field

$$
\vec{E}(\vec{R}, t)=q\left[\frac{(\hat{n}-\vec{\beta})\left(1-\beta^{2}\right)}{\kappa^{3} R^{2}}\right]_{\mathrm{ret}}+\frac{q}{c}\left[\frac{\hat{n}}{\kappa^{3} R} \times\{(\hat{n}-\vec{\beta}) \times \dot{\vec{\beta}}\}\right]_{\mathrm{ret}}
$$

with $\kappa=1-\widehat{n} \cdot \widehat{\beta}$
magnetic field is

$$
\vec{B}(\vec{R}, t)=[\hat{n} \times \vec{E}(\vec{R}, t)]_{\mathrm{ret}}
$$

$Q: \vec{E}$ result for charge at rest? \vec{B} ?
$Q: \vec{E}$ for charge with with constant velocity?
Q : result at large R ?

Electric "Velocity" Field

point source first term $=$ "velocity field"

$$
\begin{equation*}
\vec{E}(\vec{R}, t)_{\mathrm{vel}}=q\left[\frac{(\hat{n}-\vec{\beta})\left(1-\beta^{2}\right)}{\kappa^{2} R^{2}}\right]_{\mathrm{ret}} \tag{1}
\end{equation*}
$$

- depends only on position and velocity evaluated at a past location of the particle
- velocity field not isotropic if particle moving
displacement from retarded position $\vec{R}\left(t_{\text {ret }}\right)$
to the field position \vec{R} is $\hat{n} c\left(t-t_{\text {ret }}\right)$
to the current particle position $\beta c\left(t-t_{\text {ret }}\right)$
so \vec{E} points to current position!
$\checkmark \rightarrow$ legal? yes! velocity constant, trajectory always "available"

Electric Acceleration Field

electric velocity field $\propto 1 / R^{2}$
but other acceleration term $\propto \dot{v}_{0}$

$$
\begin{equation*}
\vec{E}(\vec{R}, t)_{\text {accel }}=\frac{q}{c}\left[\frac{\hat{n}}{\kappa^{3} R} \times\{(\widehat{n}-\widehat{\beta}) \times \dot{\hat{\beta}}\}\right]_{\mathrm{ret}} \tag{2}
\end{equation*}
$$

drops with distance $\propto 1 / R$: always larger at large R
for nonrelativistic motion, $\beta_{0}=v_{0} / c \ll 1$, and so to first order

$$
\begin{equation*}
\vec{E}(\vec{R}, t)_{\mathrm{accel}} \approx\left[\frac{q}{c^{2} R} \hat{n} \times(\hat{n} \times \vec{a})\right]_{\mathrm{ret}} \tag{3}
\end{equation*}
$$

a huge result!

Q: if acceleration is linear, what is polarization?
at large distances

$$
\begin{equation*}
\vec{E}(\vec{R}, t) \rightarrow \vec{E}(\vec{R}, t)_{\mathrm{accel}} \approx\left[\frac{q}{c^{2} R} \hat{n} \times(\hat{n} \times \vec{a})\right]_{\mathrm{ret}} \tag{4}
\end{equation*}
$$

instantaneous \vec{E} direction set by \hat{a} and \hat{n}
if acceleration is linear $\rightarrow \hat{a}$ fixed
then \vec{E} lies within (\hat{n}, \widehat{a}) plane $\rightarrow 100 \%$ linearly polarized
using $\vec{B} \rightarrow \hat{n} \times \vec{E}_{\text {accel }}$, the Poynting flux is

$$
\begin{equation*}
\vec{S} \approx \frac{c}{4 \pi} E_{\text {accel }}^{2} \hat{n}=\frac{q^{2}}{4 \pi c^{3} R^{2}}|\hat{n} \times(\hat{n} \times \dot{\vec{\beta}})|^{2} \hat{n} \tag{5}
\end{equation*}
$$

\checkmark Q: noteworthy features?
the Poynting flux is

$$
\begin{equation*}
\vec{S} \approx \frac{q^{2}}{4 \pi c^{3} R^{2}}|\hat{n} \times(\hat{n} \times \dot{\vec{\beta}})|^{2} \tag{6}
\end{equation*}
$$

$S \propto R_{\text {ret }}^{-2}$: flux obeys inverse square law!
Power per unit solid angle is

$$
\begin{equation*}
\frac{d P}{d \Omega}=R^{2} \widehat{n} \cdot \vec{S} \approx \frac{c}{4 \pi}\left|R \vec{E}_{\mathrm{accel}}\right|^{2}=\frac{q^{2}}{4 \pi c^{3}}|\hat{n} \times(\hat{n} \times \dot{\vec{\beta}})|^{2} \tag{7}
\end{equation*}
$$

independent of distance! Q : why did this have to be true?

Q: in which directions is $d P / d \Omega$ largest? smallest?
Q : radiation pattern?

Larmor Formula

Nonrelativistic charges radiate when accelerated!
Power per unit solid angle is

$$
\frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}}|\hat{n} \times(\hat{n} \times \dot{\vec{\beta}})|^{2}
$$

define angle Θ between \vec{a} and \hat{n} via $\hat{n} \cdot \hat{\beta}=\cos \Theta$:

$$
\frac{d P}{d \Omega}=\frac{q^{2} a^{2}}{4 \pi c^{3}} \sin ^{2} \Theta
$$

a $\sin ^{2} \Theta$ pattern!
\rightarrow no radiation in direction of acceleration, maximum $\perp \vec{a}$ integrate over all solid angles: total radiated power is

$$
\begin{equation*}
P=\frac{q^{2} a^{2}}{4 \pi c^{3}} \int \sin ^{2} \Theta d \Omega=\frac{2}{3} \frac{q^{2}}{c^{3}} a^{2} \tag{8}
\end{equation*}
$$

this will be our workhorse!
relates radiation to particle acceleration via $P \propto a^{2}$

An Accelerated Point Charge

consider a particle rapidly decelerated from speed v to rest over time δt
initial position v
"expected" position at
-
ct
stopped at δt
consider a later time $t \gg \delta t$
Q : field configuration near particle ($r \ll c t$) ?
Q : field configuration near particle ($r \gg c t$)?
Q: consequences?
for fields track particle location expected for constant velocity

- nearby: $r \ll c t$, fields radial around particle at rest
- far away: $r \gg c t$: fields don't "know" particle has stopped \rightarrow "anticipate" location displaced by ct from original particle radially oriented around this expected point
between the two regimes: $r=c t \pm c \delta t$ field lines must have "kinks" which
- have tangential field component
- tangential component is anisotropic and largest $\perp \vec{v}$

consider vertical fieldline $\perp \vec{v}$:
kink radial width $c \delta t$
kink tangential width $v t=(v / c) r$
tangential/radial ratio is $(v / \delta t) r / c^{2}$ but $v / \delta t=a$, average acceleration:
$\rightarrow E_{\perp} / E_{r}=a r / c^{2}$
more generally, tangential width is
$v t \sin \Theta=(v / c) r \sin \Theta$
with angle Θ between \vec{a} and \hat{n}
and so using Coulomb for E_{r} :

$$
\begin{equation*}
E_{\perp}=\frac{a r \sin \Theta}{c^{2}} E_{r}=\frac{q a}{c^{2} r} \sin \Theta \tag{9}
\end{equation*}
$$

this is huge! Q : why?
Q: relation to radiated flux?

We find acceleration leads to a propagating field perturbation that is tangential $=$ transverse!
just what we expect for EM radiation
so we expect also a transverse \vec{B} component, with

$$
\begin{equation*}
B_{\perp}=E_{\perp}=\frac{a r \sin \Theta}{c^{2}} E_{r}=\frac{q a}{c^{2} r} \sin \Theta \tag{10}
\end{equation*}
$$

and thus a radial Poynting vector with magnitude

$$
\begin{equation*}
S=\frac{c}{4 \pi} E_{\perp}^{2}=\frac{q^{2} a^{2}}{4 \pi c^{3} r^{2}} \sin ^{2} \Theta \tag{11}
\end{equation*}
$$

An Ensemble of Point Charges

Note: existence of kink and thus of radiation demanded by combination of

- Gauss' law (field lines not created or destroyed in vacuum)
- finite propagation speed c

So far: field of a single point charge Now: consider N particles, with $q_{i}, \vec{R}_{i}, \vec{v}_{i}=\dot{\vec{R}}_{i}$

Net \vec{E} will be sum over all particles
Q: complications beyond "simple" bookkeeping?
Q : when will things simplify?

Approximate Phase Coherence

fields for each charge depend on it's retarded time and these are different for each charge
\rightarrow leads to phase differences between particles which we in general would have to track

When are phase differences not a problem?
When light-travel-time lags between particles
represent small phase differences

Let system size be L, and timescale for variations τ if $\tau \gg L / c$, phase differences will be small
or: characteristic frequency is $\nu \sim 1 / \tau$
so phase differences small if $c / \nu \gg L$, or $\lambda \gg L$
note that typical particle speeds $u \sim L / \tau$, so
औ phase coherence condition $\rightarrow u \ll c \rightarrow$ nonrelativistic motion

Dipole Approximation

so for non-relativistic systems we may ignore

- differences in time retardation, and
- the correction factor $\kappa=1-\hat{n} \cdot \vec{v} / c \rightarrow 1$
and thus we have

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}}=\sum_{i} \frac{q_{i}}{c^{2}} \frac{\widehat{n} \times\left(\widehat{n} \times \vec{a}_{i}\right)}{R_{i}} \tag{12}
\end{equation*}
$$

but the system has $R_{i} \approx R_{0} \gg L$, and so

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}}=\widehat{n} \times\left(\frac{\widehat{n}}{c^{2} R_{0}} \times \sum_{i} q_{i} \vec{a}_{i}\right)=\frac{\hat{n} \times(\hat{n} \times \dddot{\vec{d}})}{c^{2} R_{0}} \tag{13}
\end{equation*}
$$

where the dipole moment is

$$
\begin{equation*}
\vec{d}=\sum_{i} q_{i} \vec{R}_{i} \tag{14}
\end{equation*}
$$

for a non-relativistic dipole, we have

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}}=\frac{\widehat{n} \times(\widehat{n} \times \ddot{\vec{d}})}{c^{2} R_{0}} \tag{15}
\end{equation*}
$$

this dipole approximation gives: power per unit solid angle

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{\ddot{d}^{2}}{4 \pi c^{3}} \sin ^{2} \Theta \tag{16}
\end{equation*}
$$

and the total power radiated

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{2}{3} \frac{\ddot{d}^{2}}{c^{3}} \tag{17}
\end{equation*}
$$

consider a dipole that maintains the same orientation \vec{d}

$$
\begin{equation*}
E(t)=\ddot{d}(t) \frac{\sin \Theta}{c^{2} R_{0}} \tag{18}
\end{equation*}
$$

using Fourier transform of $d(t)$, we have

$$
\begin{equation*}
d(t)=\int e^{-i \omega t} \widetilde{d}(\omega) d \omega \tag{19}
\end{equation*}
$$

and so

$$
\begin{equation*}
\tilde{E}(\omega)=-\omega^{2} \widetilde{d}(\omega) \frac{\sin \Theta}{c^{2} R_{0}} \tag{20}
\end{equation*}
$$

and thus the energy per solid angle and frequency is

$$
\begin{equation*}
\frac{d W}{d \Omega d \omega}=\frac{1}{c^{3}} \omega^{4}|\tilde{d}(\omega)|^{2} \sin ^{2} \Theta \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d W}{d \omega}=\frac{8 \pi}{3 c^{3}} \omega^{4}|\tilde{d}(\omega)|^{2} \tag{22}
\end{equation*}
$$

- note the $\omega^{4} \propto \lambda^{-4}$ dependence
- and $\tilde{d}(\omega)$: dipole frequencies control radiation frequencies

Director's Cut Extras

The Vector Potential

No-molopoles condition $\nabla \cdot \vec{B}$
strongly restricts \vec{B} configurations
condition automatically satisfied if we write

$$
\begin{equation*}
\vec{B}=\nabla \times \vec{A} \tag{23}
\end{equation*}
$$

guarantees zero divergence because, for any \vec{A}

$$
\begin{equation*}
\nabla \cdot(\nabla \times \vec{A})=0 \tag{24}
\end{equation*}
$$

where \vec{A} is the vector potential
Q : units of \vec{A} ?
write Faraday's law in terms of \vec{A} :

$$
\begin{equation*}
\nabla \times \vec{E}=-\frac{1}{c} \partial_{t}(\nabla \times \vec{A}) \tag{25}
\end{equation*}
$$

and so

$$
\begin{equation*}
\nabla \times\left(\vec{E}+\frac{1}{c} \partial_{t} \vec{A}\right)=0 \tag{26}
\end{equation*}
$$

strongly restricts \vec{E} configurations
Q : how to automatically satisfy?

The Scalar Potential

Faraday with \vec{A}

$$
\begin{equation*}
\nabla \times\left(\vec{E}+\frac{1}{c} \partial_{t} \vec{A}\right)=0 \tag{27}
\end{equation*}
$$

vector field $\vec{E}+\frac{1}{c} \partial_{t} \vec{A}$ is curl-free
to automatically satisfy this, note that

$$
\begin{equation*}
\nabla \times(\nabla \phi)=0 \tag{28}
\end{equation*}
$$

curl of grad vanishes for any scalar field (=function) ϕ
define scalar potential via

$$
\begin{equation*}
\vec{E}=-\nabla \phi-\frac{1}{c} \partial_{t} \vec{A} \tag{29}
\end{equation*}
$$

Q : units of ϕ ?
Q : are \vec{A} and ϕ unique? why?

Gauge Freedom

vector potential defined to give $\nabla \times \vec{A}=\vec{B}$ clearly if $\vec{A} \rightarrow \vec{A}^{\prime}=\vec{A}+$ constant, $\vec{B} \rightarrow \vec{B}$
\Rightarrow physical field unchanged
in fact: \vec{B} unchanged for any transformation
$\vec{A} \rightarrow \overrightarrow{A^{\prime}}$ which preserves $\nabla \times \overrightarrow{A^{\prime}}=\vec{B}$:

$$
\begin{equation*}
\nabla \times\left(\vec{A}^{\prime}-\vec{A}\right)=0 \tag{30}
\end{equation*}
$$

and thus there is no physical change if

$$
\begin{equation*}
\overrightarrow{A^{\prime}}=\vec{A}+\nabla \psi \tag{31}
\end{equation*}
$$

because $\nabla \times(\nabla \psi)=0$ for any ψ
\rightarrow gauge invariance
Q: what condition needed to keep \vec{E} unchanged?

Gauge Invariance

the physical electric field has

$$
\begin{equation*}
\vec{E}=-\nabla \phi-\frac{1}{c} \partial_{t} \vec{A} \tag{32}
\end{equation*}
$$

and must remain the same when $\vec{A} \rightarrow \vec{A}+\nabla \psi$
but we have

$$
\begin{align*}
\vec{E} \rightarrow \vec{E}^{\prime} & =-\nabla \phi-\frac{1}{c} \partial_{t} \vec{A}^{\prime} \tag{33}\\
& =-\nabla\left(\phi+\frac{1}{c} \partial_{t} \psi\right)-\frac{1}{c} \partial_{t} \vec{A} \tag{34}
\end{align*}
$$

$Q:$ and so?

$$
\begin{equation*}
\vec{E} \rightarrow \vec{E}^{\prime}=-\nabla\left(\phi+\frac{1}{c} \partial_{t} \psi\right)-\frac{1}{c} \partial_{t} \vec{A} \tag{35}
\end{equation*}
$$

and so to keep $\vec{E}^{\prime}=\vec{E}$ requires

$$
\begin{equation*}
\phi \rightarrow \phi^{\prime}=\phi-\frac{1}{c} \partial_{t} \psi \tag{36}
\end{equation*}
$$

the \vec{E}, \vec{B} preserving mappings

$$
\begin{equation*}
(\phi, \vec{A}) \rightarrow(\phi, \vec{A})+\left(\partial_{t} \psi / c, \nabla \psi\right) \tag{37}
\end{equation*}
$$

is a gauge transformation
a deep but also annoying property of electromagnetism for our purposes, a useful but not unique choice

$$
\begin{equation*}
\nabla \cdot \vec{A}+\frac{1}{c} \partial_{t} \phi=0 \tag{38}
\end{equation*}
$$

"Lorentz gauge"

Maxwell Revisited

express Maxwell in terms of potentials: Coulomb

$$
\begin{align*}
-\nabla \cdot\left(\nabla \phi-\frac{1}{c} \partial_{t} \vec{A}\right) & =-\nabla^{2} \phi-\frac{1}{c} \partial_{t}(\nabla \cdot \vec{A}) \tag{39}\\
& =4 \pi \rho_{q} \tag{40}
\end{align*}
$$

and so in Lorentz gauge

$$
\begin{equation*}
\nabla^{2} \phi-\frac{1}{c^{2}} \partial_{t}^{2} \phi=-4 \pi \rho_{q} \tag{41}
\end{equation*}
$$

scalar potential satisfies a wave equation!
ϕ source is charge density ρ_{q}
changes in ϕ propagate at speed c
for static situation $\partial_{t} \phi=0$, Poisson $\nabla^{2} \phi=-4 \pi \rho_{q}$, and

$$
\begin{equation*}
\phi(\vec{r})=\int d^{3} \vec{r}^{\prime} \frac{\rho_{q}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|} \tag{42}
\end{equation*}
$$

Q: solution for full wave equation?

Scalar Potential and Retarded Time

general solution to

$$
\begin{equation*}
\nabla^{2} \phi-\frac{1}{c^{2}} \partial_{t}^{2} \phi=-4 \pi \rho_{q} \tag{43}
\end{equation*}
$$

turns out to be

$$
\begin{equation*}
\phi(\vec{r}, t)=\int d^{3} \vec{r}^{\prime} \frac{\rho_{q}\left(\vec{r}^{\prime}, t^{\prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|}=\int d^{3} \vec{r}^{\prime}\left[\frac{\rho_{q}}{\left|\vec{r}^{\prime}-\vec{r}\right|}\right]_{\mathrm{ret}} \tag{44}
\end{equation*}
$$

where source density $\rho_{q}\left(\vec{r}^{\prime}, t^{\prime}\right)$
is evaluated at retarded time

$$
\begin{equation*}
t^{\prime} \equiv\left[t_{\mathrm{ret}}\right]=t-\frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{c} \tag{45}
\end{equation*}
$$

$\rightarrow \phi$ "learns" about changes in charge density at \vec{r}^{\prime}
∞ only after signal propagation time ctprop $^{\infty}=|\vec{r}|$

Maxwell and the Vector Potential

in terms of potentials, Ampère in Cartesian coords:

$$
\begin{align*}
\nabla \times(\nabla \times \vec{A}) & =\nabla^{2} \vec{A}-\nabla(\nabla \cdot \vec{A}) \tag{46}\\
& =\frac{4 \pi}{c} \vec{j}+\frac{1}{c}\left(\nabla \phi+\partial_{t} \vec{A}\right) \tag{47}
\end{align*}
$$

so in Lorentz gauge

$$
\begin{equation*}
\nabla^{2} \vec{A}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{A}=-\frac{4 \pi}{c} \vec{j} \tag{48}
\end{equation*}
$$

vector potential also satisfies a wave equation source is current density \vec{j}
$Q:$ solution?
each component A_{i} of vector potential satisfies

$$
\begin{equation*}
\nabla^{2} A_{i}-\frac{1}{c^{2}} \partial_{t}^{2} A_{i}=-\frac{4 \pi}{c} j_{i} \tag{49}
\end{equation*}
$$

formally identical to scalar potential equation if we put $\phi \rightarrow A_{i}$ and $\rho_{q} \rightarrow j_{i} / c$
and thus we can import the solution:

$$
\begin{equation*}
A_{i}(\vec{r}, t)=\int d^{3} \vec{r}^{\prime}\left[\frac{j_{i}}{\left|\vec{r}^{\prime}-\vec{r}\right|}\right]_{\mathrm{ret}} \tag{50}
\end{equation*}
$$

\rightarrow vector potential responds to current changes after "retarded time" delay

Integral solutions for ϕ and \vec{A} are huge!
๗ Q: why? what's the Big Deal?

Recipe for Electromagnetic Fields

our mission: find $\vec{E}(\vec{r}, t)$ and $\vec{B}(\vec{r}, t)$
given charge $\rho_{q}(\vec{r}, t)$ and current $\vec{j}(\vec{r}, t)$ distributions
solution: first find potentials via

$$
\begin{align*}
& \phi(\vec{r}, t)=\int d^{3} \vec{r}^{\prime}\left[\frac{\rho_{q}}{\left|\vec{r}^{\prime}-\vec{r}\right|}\right]_{\text {ret }} \tag{51}\\
& \vec{A}(\vec{r}, t)=\int d^{3} \vec{r}^{\prime}\left[\vec{j}\left|\vec{r}^{\prime}-\vec{r}\right|\right]_{\text {ret }} \tag{52}
\end{align*}
$$

from these, find fields via

$$
\begin{align*}
\vec{E} & =-\nabla \phi-\frac{1}{c} \partial_{t} \vec{A} \tag{53}\\
\vec{B} & =\nabla \times \vec{A} \tag{54}
\end{align*}
$$

ta da!
in the 3-D spatial integrals

$$
\begin{equation*}
\phi(\vec{r}, t)=-\int d^{3} \vec{r}^{\prime}\left[\frac{\rho_{q}}{\left|\vec{r}^{\prime}-\vec{r}\right|}\right]_{\mathrm{ret}} \tag{55}
\end{equation*}
$$

it is convenient (and pretty!) to recast as integrals over 4-D spacetime:

$$
\begin{equation*}
\phi(\vec{r}, t)=-\int d^{3} \vec{r}^{\prime} d t^{\prime} \frac{\rho_{q}\left(\vec{r}^{\prime}, t^{\prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|} \delta\left(t^{\prime}-t+\left|\vec{r}-\vec{r}^{\prime}\right| / c\right) \tag{56}
\end{equation*}
$$

were the δ function enforces the retarded time condition

Q: What if charges are all pointlike?

Potentials from Point Charges

if N point charges, where i th charge q_{i} has trajectory with position $\vec{r}_{i}(t)$, and velocity $\vec{v}_{i}(t)$, then

$$
\begin{align*}
\rho_{q}(\vec{r}, t) & =\sum_{i} q_{i} \delta^{(3)}\left(\vec{r}-\vec{r}_{i}\right) \tag{57}\\
\vec{j}(\vec{r}, t) & =\sum_{i} q_{i} v_{i}(t) \delta^{(3)}\left(\vec{r}-\vec{r}_{i}\right) \tag{58}
\end{align*}
$$

with Dirac δ-functions $\delta^{(3)}\left(\vec{r}-\overrightarrow{r_{i}}\right)=\delta\left(x-x_{i}\right) \delta\left(y-y_{i}\right) \delta\left(z-z_{i}\right)$
scalar potential due to one charge with $q_{0}, \vec{r}_{0}(t), \vec{v}_{0}(t)$ is

$$
\begin{equation*}
\phi(\vec{r}, t)=q_{0} \int d^{3} \vec{r}^{\prime} d t^{\prime} \frac{\delta^{(3)}\left(\vec{r}^{\prime}-\vec{r}_{0}(t)\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|} \delta\left(t^{\prime}-t+\left|\vec{r}-\vec{r}^{\prime}\right| / c\right) \tag{59}
\end{equation*}
$$

space part of integral is easy

$$
\begin{equation*}
\phi(\vec{r}, t)=q_{0} \int d t^{\prime} \frac{\delta\left(t^{\prime}-t+\left|\vec{r}-\vec{r}_{0}\left(t^{\prime}\right)\right| / c\right)}{\left|\vec{r}-\vec{r}_{0}\left(t^{\prime}\right)\right|} \tag{60}
\end{equation*}
$$

writing $\vec{R}\left(t^{\prime}\right) \equiv \vec{r}-\vec{r}_{0}\left(t^{\prime}\right)$ and $R\left(t^{\prime}\right)=\left|\vec{R}\left(t^{\prime}\right)\right|$, we have

$$
\begin{equation*}
\phi(\vec{r}, t)=q_{0} \int d t^{\prime} \frac{\delta\left(t^{\prime}-t+R\left(t^{\prime}\right) / c\right)}{R(t)} \tag{61}
\end{equation*}
$$

and now the final δ function is nontrivial
math aside: fun properties of the δ function
$\delta(x)$ designed to give

$$
\begin{equation*}
\int f(y) \delta(y-x) d y=f(x) \tag{62}
\end{equation*}
$$

but if δ argument is a function of the integration variable

$$
\begin{equation*}
\int f(y) \delta(g(x)) d y=\sum_{\text {roots } j} \frac{f\left(g\left(x_{j}\right)\right)}{|d g / d x|_{x_{j}}} \tag{63}
\end{equation*}
$$

where root x_{j} is the j th solution to $y-g(x)=0$
$\stackrel{\omega}{\triangleright}$ here: define $t^{\prime \prime}=t^{\prime}-t+R\left(t^{\prime}\right) / c$
then $d t^{\prime \prime}=d t^{\prime}+\dot{R}\left(t^{\prime}\right) / c d t^{\prime}$

Liénard-Wiechert Potentials

for point source with arbitrary trajectory, we have

$$
\begin{equation*}
\phi(\vec{r}, t)=\frac{1}{1-\widehat{n} \cdot \hat{\beta_{0}}\left(t_{\mathrm{ret}}\right)} \frac{q_{0}}{R} \tag{64}
\end{equation*}
$$

where $\widehat{n}=\vec{r} / r$ and $\vec{\beta}_{0}(t)=\vec{v}_{0}(t) / c$
similarly, vector potential solution is

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\frac{1}{1-\widehat{r} \cdot \hat{\beta}_{0}\left(t_{\mathrm{ret}}\right)} \frac{q_{0} \vec{v}_{0}\left(\vec{r}, t_{\mathrm{ret}}\right)}{R\left(t_{\mathrm{ret}}\right)} \tag{65}
\end{equation*}
$$

these are the Liénard-Wiechert potentials

Q: equipotential surfaces $\phi=$ const for
stationary charge $\vec{r}_{0}(t)=$ const?
Q: for charge with \vec{v}_{0} large?
Q: implications?
potential factor $\kappa \equiv[1-\widehat{n} \cdot \widehat{\beta}]_{\text {ret }}$ is

- directional,
- velocity dependent, such that
- potential $\propto 1 / \kappa$ enhanced along direction of charge motion and potential suppressed opposite direction of charge motion
\Rightarrow expect forward "beaming" effects!

But we want the EM fields, not just potentials, so we need to evaluate

$$
\begin{align*}
\vec{E} & =-\nabla \phi-\frac{1}{c} \partial_{t} \vec{A} \tag{66}\\
\vec{B} & =\nabla \times \vec{A} \tag{67}
\end{align*}
$$

using the beautiful Liénard-Wiechert point-source potentials where, $\phi=\phi\left[\vec{r}, t ; \vec{r}_{0}(t), \vec{v}_{0}(t)\right]$ and $\vec{A}=\vec{A}\left[\vec{r}, t ; \vec{r}_{0}(t), \vec{v}_{0}(t)\right]$

Q: what terms will appear in \vec{E} ?

