
Astro 501: Radiative Processes

Lecture 14

Sept. 28, 2018

Announcements:

• Problem Set 4 due now

• Problem Set 5 due next Friday

Last time:

• polarization

• moving charges
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Electrodynamics of Moving Charges: Strategy

point charge q:

position ~R(t)

velocity ~v = ~̇R = ~βc

and acceleration ~a = ~̈R = c d~β/dt = c~̇β
v

position at t

R

n

Maxwell sources:

charge density ρ(~x) = q δ(~x− ~R), current density ~j = ρ~v

Procedure (see R&L and Extras for more):

0. Use full Special Relativity

1. write EM fields as derivatives of 4-potential (φ, ~A)

2. Maxwell → 2nd-order equations ∂2potential = source

3. solve for fields given above source terms
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Electrodynamics of Moving Charges: Results

A careful calculation, and a lot of algebra, gives

an exact formula for the field of a moving point charge

~E(~R, t) = q

[

(n̂− ~β)(1 − β2)

κ3R2

]

ret

+
q

c

[

n̂

κ3R
×

{

(n̂− ~β) × ~̇β

}]

ret

where κ = 1 − n̂ · β̂

and “ret” = particle position at retarded time

tret = t−R/c n
ret

retv

n

position at t
position at t ret

retR

form is rich = complicated, but also complete and exact!

depends on charge position, velocity, and acceleration
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for electric field

~E(~R, t) = q

[

(n̂− ~β)(1 − β2)

κ3R2

]

ret

+
q

c

[

n̂

κ3R
×

{

(n̂− ~β) × ~̇β

}]

ret

with κ = 1 − n̂ · β̂

magnetic field is ~B(~R, t) =
[

n̂× ~E(~R, t)
]

ret
n

ret

retv

n

position at t
position at t ret

retR

Q: ~E result for charge at rest? ~B?

Q: ~E for charge with with constant velocity?

Q: result at large R?
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Electric “Velocity” Field

point source first term = “velocity field”

~E(~R, t)vel = q

[

(n̂− ~β)(1 − β2)

κ2R2

]

ret

(1)

• depends only on position and velocity

evaluated at a past location of the particle

• velocity field not isotropic if particle moving

displacement from retarded position ~R(tret)

to the field position ~R is n̂c(t− tret)

to the current particle position βc(t− tret)

so ~E points to current position!

→ legal? yes! velocity constant, trajectory always “available”
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Electric Acceleration Field

electric velocity field ∝ 1/R2

but other acceleration term ∝ v̇0

~E(~R, t)accel =
q

c

[

n̂

κ3R
×

{

(n̂− β̂) × ˙̂β
}

]

ret
(2)

drops with distance ∝ 1/R: always larger at large R

for nonrelativistic motion, β0 = v0/c≪ 1,

and so to first order

~E(~R, t)accel ≈

[

q

c2R
n̂× (n̂× ~a)

]

ret
(3)

a huge result!

Q: if acceleration is linear, what is polarization?
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at large distances

~E(~R, t) → ~E(~R, t)accel ≈

[

q

c2R
n̂× (n̂× ~a)

]

ret
(4)

instantaneous ~E direction set by â and n̂

if acceleration is linear → â fixed

then ~E lies within (n̂, â) plane → 100% linearly polarized

using ~B → n̂× ~Eaccel, the Poynting flux is

~S ≈
c

4π
E2

accel n̂ =
q2

4πc3R2

∣

∣

∣

∣

n̂× (n̂× ~̇β)

∣

∣

∣

∣

2
n̂ (5)

Q: noteworthy features?
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the Poynting flux is

~S ≈
q2

4πc3R2

∣

∣

∣

∣

n̂× (n̂× ~̇β)

∣

∣

∣

∣

2
(6)

S ∝ R−2
ret: flux obeys inverse square law!

Power per unit solid angle is

dP

dΩ
= R2n̂ · ~S ≈

c

4π
|R~Eaccel|

2 =
q2

4πc3

∣

∣

∣

∣

n̂× (n̂× ~̇β)

∣

∣

∣

∣

2
(7)

independent of distance! Q: why did this have to be true?

Q: in which directions is dP/dΩ largest? smallest?

Q: radiation pattern?
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Larmor Formula

Nonrelativistic charges radiate when accelerated!

Power per unit solid angle is

dP

dΩ
=

q2

4πc3

∣

∣

∣

∣

n̂× (n̂× ~̇β)

∣

∣

∣

∣

2

define angle Θ between ~a and n̂ via n̂ · β̂ = cosΘ:

dP

dΩ
=
q2a2

4πc3
sin2 Θ

a sin2 Θ pattern!

→ no radiation in direction of acceleration, maximum ⊥ ~a

R

a
n Θ

integrate over all solid angles: total radiated power is

P =
q2a2

4πc3

∫

sin2 ΘdΩ =
2

3

q2

c3
a2 (8)

this will be our workhorse!

relates radiation to particle acceleration via P ∝ a2
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An Accelerated Point Charge

consider a particle rapidly decelerated from speed v to rest

over time δt

initial position

stopped at

"expected" position atv

δt
ct

consider a later time t≫ δt

Q: field configuration near particle (r ≪ ct) ?

Q: field configuration near particle (r ≫ ct )?

Q: consequences?

1
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for fields track particle location expected for constant velocity

• nearby: r ≪ ct, fields radial around particle at rest

• far away: r ≫ ct: fields don’t “know” particle has stopped

→ “anticipate” location displaced by ct from original particle

radially oriented around this expected point

between the two regimes: r = ct± cδt

field lines must have “kinks” which

• have tangential field component

• tangential component is anisotropic

and largest ⊥ ~v
width

ct c  t δ

1
1



consider vertical fieldline ⊥ ~v:

kink radial width cδt

kink tangential width vt = (v/c)r

tangential/radial ratio is (v/δt)r/c2

but v/δt = a, average acceleration:

→ E⊥/Er = ar/c2

sin θ

tδc

vt

vt

θ
more generally, tangential width is

vt sinΘ = (v/c)r sinΘ

with angle Θ between ~a and n̂

and so using Coulomb for Er:

E⊥ =
ar sinΘ

c2
Er =

qa

c2r
sinΘ (9)

this is huge! Q: why?

Q: relation to radiated flux?

1
2



We find acceleration leads to a propagating field perturbation

that is tangential = transverse!

just what we expect for EM radiation

so we expect also a transverse ~B component, with

B⊥ = E⊥ =
ar sinΘ

c2
Er =

qa

c2r
sinΘ (10)

and thus a radial Poynting vector with magnitude

S =
c

4π
E2
⊥ =

q2a2

4πc3r2
sin2 Θ (11)

1
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An Ensemble of Point Charges

Note: existence of kink and thus of radiation

demanded by combination of

• Gauss’ law (field lines not created or destroyed in vacuum)

• finite propagation speed c

So far: field of a single point charge

Now: consider N particles, with qi, ~Ri, ~vi = ~̇Ri

Net ~E will be sum over all particles

Q: complications beyond “simple” bookkeeping?

Q: when will things simplify?

1
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Approximate Phase Coherence

fields for each charge depend on it’s retarded time

and these are different for each charge

→ leads to phase differences between particles

which we in general would have to track

When are phase differences not a problem?

When light-travel-time lags between particles

represent small phase differences

1
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L

n

R0

Let system size be L, and timescale for variations τ

if τ ≫ L/c, phase differences will be small

or: characteristic frequency is ν ∼ 1/τ

so phase differences small if c/ν ≫ L, or λ≫ L

note that typical particle speeds u ∼ L/τ , so

phase coherence condition → u≪ c → nonrelativistic motion

1
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Dipole Approximation

so for non-relativistic systems we may ignore

• differences in time retardation, and

• the correction factor κ = 1 − n̂ · ~v/c→ 1

and thus we have

~Erad =
∑

i

qi
c2

n̂× (n̂× ~ai)

Ri
(12)

but the system has Ri ≈ R0 ≫ L, and so

~Erad = n̂×





n̂

c2R0
×

∑

i

qi~ai



 =
n̂× (n̂× ~̈d)

c2R0
(13)

where the dipole moment is

~d =
∑

i

qi ~Ri (14)1
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for a non-relativistic dipole, we have

~Erad =
n̂× (n̂× ~̈d)

c2R0
(15)

this dipole approximation gives: power per unit solid angle

dP

dΩ
=

d̈
2

4πc3
sin2 Θ (16)

and the total power radiated

dP

dΩ
=

2

3

d̈
2

c3
(17)

1
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consider a dipole that maintains the same orientation ~d

E(t) = d̈(t)
sinΘ

c2R0
(18)

using Fourier transform of d(t), we have

d(t) =
∫

e−iωtd̃(ω) dω (19)

and so

Ẽ(ω) = −ω2d̃(ω)
sinΘ

c2R0
(20)

and thus the energy per solid angle and frequency is

dW

dΩdω
=

1

c3
ω4

∣

∣

∣d̃(ω)
∣

∣

∣

2
sin2 Θ (21)

and
dW

dω
=

8π

3c3
ω4

∣

∣

∣d̃(ω)
∣

∣

∣

2
(22)

• note the ω4 ∝ λ−4 dependence

• and d̃(ω): dipole frequencies control radiation frequencies

1
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Director’s Cut Extras

2
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The Vector Potential

No-molopoles condition ∇ · ~B

strongly restricts ~B configurations

condition automatically satisfied if we write

~B = ∇× ~A (23)

guarantees zero divergence because, for any ~A

∇ · (∇× ~A) = 0 (24)

where ~A is the vector potential

Q: units of ~A?

2
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write Faraday’s law in terms of ~A:

∇× ~E = −
1

c
∂t(∇× ~A) (25)

and so

∇×

(

~E +
1

c
∂t ~A

)

= 0 (26)

strongly restricts ~E configurations

Q: how to automatically satisfy?

2
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The Scalar Potential

Faraday with ~A

∇×

(

~E +
1

c
∂t ~A

)

= 0 (27)

vector field ~E + 1
c∂t

~A is curl-free

to automatically satisfy this, note that

∇× (∇φ) = 0 (28)

curl of grad vanishes for any scalar field (=function) φ

define scalar potential via

~E = −∇φ−
1

c
∂t ~A (29)

Q: units of φ?

Q: are ~A and φ unique? why?

2
3



Gauge Freedom

vector potential defined to give ∇× ~A = ~B

clearly if ~A→ ~A′ = ~A+ constant, ~B → ~B

⇒ physical field unchanged

in fact: ~B unchanged for any transformation
~A→ ~A′ which preserves ∇× ~A′ = ~B:

∇× ( ~A′ − ~A) = 0 (30)

and thus there is no physical change if

~A′ = ~A+ ∇ψ (31)

because ∇× (∇ψ) = 0 for any ψ

→ gauge invariance

Q: what condition needed to keep ~E unchanged?
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Gauge Invariance

the physical electric field has

~E = −∇φ−
1

c
∂t ~A (32)

and must remain the same when ~A → ~A+ ∇ψ

but we have

~E → ~E′ = −∇φ−
1

c
∂t ~A

′ (33)

= −∇

(

φ+
1

c
∂tψ

)

−
1

c
∂t ~A (34)

Q: and so?

2
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~E → ~E′ = −∇

(

φ+
1

c
∂tψ

)

−
1

c
∂t ~A (35)

and so to keep ~E′ = ~E requires

φ→ φ′ = φ−
1

c
∂tψ (36)

the ~E, ~B preserving mappings

(φ, ~A) → (φ, ~A) + (∂tψ/c,∇ψ) (37)

is a gauge transformation

a deep but also annoying property of electromagnetism

for our purposes, a useful but not unique choice

∇ · ~A+
1

c
∂tφ = 0 (38)

“Lorentz gauge”

2
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Maxwell Revisited

express Maxwell in terms of potentials: Coulomb

−∇ ·

(

∇φ−
1

c
∂t ~A

)

= −∇2φ−
1

c
∂t(∇ · ~A) (39)

= 4πρq (40)

and so in Lorentz gauge

∇2φ−
1

c2
∂2
t φ = −4πρq (41)

scalar potential satisfies a wave equation!

φ source is charge density ρq
changes in φ propagate at speed c

for static situation ∂tφ = 0, Poisson ∇2φ = −4πρq, and

φ(~r) =
∫

d3~r′
ρq(~r′)

|~r′ − ~r|
(42)

Q: solution for full wave equation?
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Scalar Potential and Retarded Time

general solution to

∇2φ−
1

c2
∂2
t φ = −4πρq (43)

turns out to be

φ(~r, t) =

∫

d3~r′
ρq(~r′, t′)

|~r′ − ~r|
=

∫

d3~r′
[

ρq

|~r′ − ~r|

]

ret

(44)

where source density ρq(~r′, t′)

is evaluated at retarded time

t′ ≡ [tret] = t−
|~r − ~r′|

c
(45)

→ φ “learns” about changes in charge density at ~r′

only after signal propagation time ctprop = |~r′|

2
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Maxwell and the Vector Potential

in terms of potentials, Ampère in Cartesian coords:

∇× (∇× ~A) = ∇2 ~A−∇(∇ · ~A) (46)

=
4π

c
~j +

1

c

(

∇φ+ ∂t ~A
)

(47)

so in Lorentz gauge

∇2 ~A−
1

c2
∂2
t
~A = −

4π

c
~j (48)

vector potential also satisfies a wave equation

source is current density ~j

Q: solution?

2
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each component Ai of vector potential satisfies

∇2Ai −
1

c2
∂2
t Ai = −

4π

c
ji (49)

formally identical to scalar potential equation

if we put φ → Ai and ρq → ji/c

and thus we can import the solution:

Ai(~r, t) =

∫

d3~r′
[

ji
|~r′ − ~r|

]

ret

(50)

→ vector potential responds to current changes

after “retarded time” delay

Integral solutions for φ and ~A are huge!

Q: why? what’s the Big Deal?
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Recipe for Electromagnetic Fields

our mission: find ~E(~r, t) and ~B(~r, t)

given charge ρq(~r, t) and current ~j(~r, t) distributions

solution: first find potentials via

φ(~r, t) =

∫

d3~r′
[

ρq

|~r′ − ~r|

]

ret

(51)

~A(~r, t) =

∫

d3~r′
[

~j|~r′ − ~r|
]

ret
(52)

from these, find fields via

~E = −∇φ−
1

c
∂t ~A (53)

~B = ∇× ~A (54)

ta da!

3
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in the 3-D spatial integrals

φ(~r, t) = −
∫

d3~r′
[

ρq

|~r′ − ~r|

]

ret

(55)

it is convenient (and pretty!) to recast as

integrals over 4-D spacetime:

φ(~r, t) = −
∫

d3~r′ dt′
ρq(~r′, t′)

|~r′ − ~r|
δ(t′ − t+ |~r − ~r′|/c) (56)

were the δ function enforces the retarded time condition

Q: What if charges are all pointlike?

3
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Potentials from Point Charges

if N point charges, where ith charge qi has trajectory with

position ~ri(t), and velocity ~vi(t), then

ρq(~r, t) =
∑

i

qi δ
(3) (~r − ~ri) (57)

~j(~r, t) =
∑

i

qi vi(t) δ
(3) (~r − ~ri) (58)

with Dirac δ-functions δ(3)(~r − ~ri) = δ(x− xi) δ(y − yi) δ(z − zi)

scalar potential due to one charge with q0, ~r0(t), ~v0(t) is

φ(~r, t) = q0

∫

d3~r′ dt′
δ(3)(~r′ − ~r0(t))

|~r′ − ~r|
δ(t′ − t+ |~r − ~r′|/c) (59)

space part of integral is easy

φ(~r, t) = q0

∫

dt′
δ

(

t′ − t+ |~r − ~r0(t
′)|/c

)

|~r − ~r0(t′)|
(60)
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writing ~R(t′) ≡ ~r − ~r0(t
′)

and R(t′) = |~R(t′)|, we have

φ(~r, t) = q0

∫

dt′
δ

(

t′ − t+R(t′)/c
)

R(t)
(61)

and now the final δ function is nontrivial

math aside: fun properties of the δ function

δ(x) designed to give
∫

f(y) δ(y − x) dy = f(x) (62)

but if δ argument is a function of the integration variable
∫

f(y) δ (g(x)) dy =
∑

rootsj

f(g(xj))

|dg/dx|xj
(63)

where root xj is the jth solution to y − g(x) = 0

here: define t′′ = t′ − t+R(t′)/c
then dt′′ = dt′ + Ṙ(t′)/c dt′
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Liénard-Wiechert Potentials

for point source with arbitrary trajectory, we have

φ(~r, t) =
1

1 − n̂ · β̂0(tret)

q0
R

(64)

where n̂ = ~r/r and ~β0(t) = ~v0(t)/c

similarly, vector potential solution is

~A(~r, t) =
1

1 − r̂ · β̂0(tret)

q0~v0(~r, tret)

R(tret)
(65)

these are the Liénard-Wiechert potentials

Q: equipotential surfaces φ = const for

stationary charge ~r0(t) = const?

Q: for charge with ~v0 large?

Q: implications?
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potential factor κ ≡ [1 − n̂ · β̂]ret is

• directional,

• velocity dependent, such that

• potential ∝ 1/κ enhanced along direction of charge motion

and potential suppressed opposite direction of charge motion

⇒ expect forward “beaming” effects!

But we want the EM fields, not just potentials,

so we need to evaluate

~E = −∇φ−
1

c
∂t ~A (66)

~B = ∇× ~A (67)

using the beautiful Liénard-Wiechert point-source potentials

where, φ = φ[~r, t;~r0(t), ~v0(t)] and ~A = ~A[~r, t;~r0(t), ~v0(t)]

Q: what terms will appear in ~E?
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