Astro 501: Radiative Processes Lecture 16 October 3, 2018

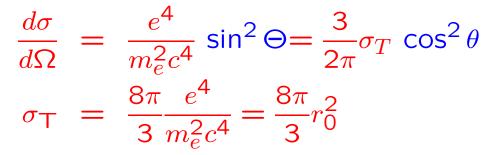
Announcements:

- Problem Set 5 due Friday
- Problem 2 (a), (b), and (c): no calculations needed
- Problem 3 (c): assume grain composition is silicate, SiO₂ with mean atom weight $A = \langle m \rangle / m_p = 60/3 = 20$ protons

Last time: Thomson scattering

Q: what's that?

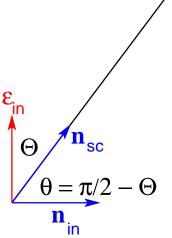
- *Q*: what does the scattered power depend on?
- Q: what does $d\sigma/d\Omega$ depend on? and not?
- \vdash Q: what does σ depend on? and not?


Q: lessons?

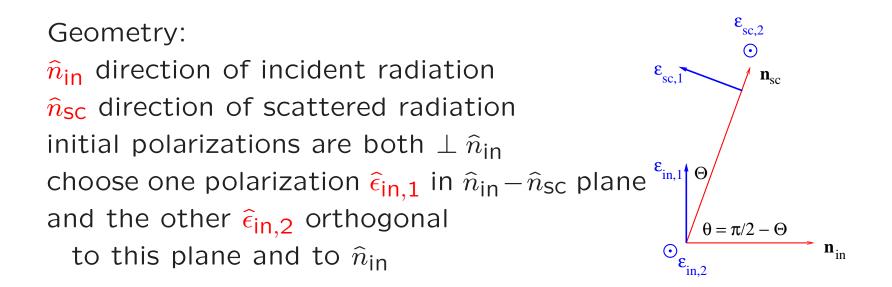
Thomson Scattering: Electron Dipole Radiation

- Thomson = scattering by non-relativistic free electrons
- no change in photon λ, ν : coherent scattering
- electron acts as dipole antenna

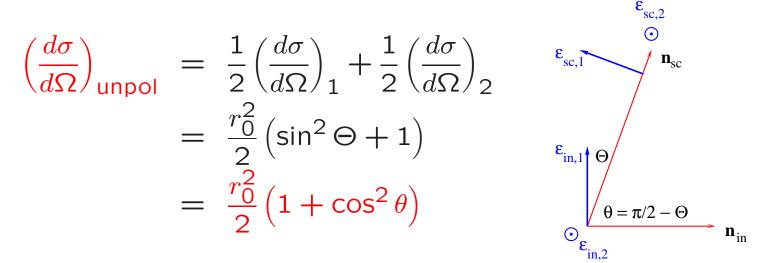
$$\frac{dP}{d\Omega} = \frac{d\sigma}{d\Omega} \langle S_{\rm in} \rangle$$


i.e., scattered power \propto incident flux proportionality is Thomson cross section

maximum at $\hat{\epsilon}_{in} \cdot \hat{n}_{sc} = \cos \Theta = 0$


which is also $\hat{n}_{in} \cdot \hat{n}_{sc} = \cos \theta = 1$, with $\theta = \pi/2 - \Theta$

 \rightarrow forward and backward scattering


Thomson Scattering of Unpolarized Radiation

Using result for linear polarization we can construct result for unpolarized radiation by *averaging results for two orthogonal linear polarizations*

∞ scattering angle of pol 1 has $\cos \Theta_1 = \hat{\epsilon}_1 \cdot \hat{n}_{sc} Q$: which means? scattering angle of pol 2 has $\cos \Theta_2 = \hat{\epsilon}_2 \cdot \hat{n}_{sc} Q$: which means?

thus scatter polarization 1 by angle $\Theta = \pi/2 - \theta$ and polarization 2 by angle $\pi/2$, and so

which only depends on angle θ

between incident $\hat{n}_{\rm in}$ and scattered $\hat{n}_{\rm SC}$ radiation directions

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{unpol}} = \frac{r_0^2}{2} \left(1 + \cos^2\theta\right) \tag{1}$$

• forward-backward symmetry: $\theta \rightarrow -\theta$ invariance

- angular pattern: $\cos^2\theta \propto \cos 2\theta$ term
- \rightarrow scattered radiation has 180^0 periodicity
- \rightarrow 4 extrema = "poles": **quadrupole** pattern!
- total cross section $\sigma_{unpol} = \sigma_{pol} = \sigma_{T}$
- \rightarrow electron at rest has no preferred direction
- Polarization degree of scattered radiation

$$\Box = \frac{\sqrt{Q^2 + U^2 + V^2}}{I} = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}$$

(2)

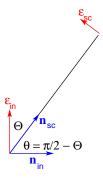
С

Q: what does this mean?

Thomson Scattering Creates Polarization

Thomson scattering of *initially unpolarized* radiation has

$$\Pi = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta} \tag{3}$$


i.e., degree of polarization $\Pi \neq 0!$

Thomson-scattered radiation is linearly polarized!

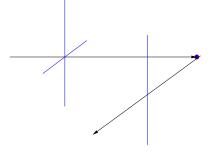
quadrupole pattern in angle θ between \hat{n}_{init} and $\hat{n}_{scattered}$

- 100% polarized at $\theta = \pi/2$
- 0% polarized at $\theta = 0, \pi$

classical picture: e^- as dipole antenna incident linearly polarized wave accelerates $e^ \rightarrow \sin^2 \theta$ pattern, peaks at $\theta = 0, \pi$

0

Thompson Scattering: A Gut Feeling


Discussion swiped from Wayne Hu's website

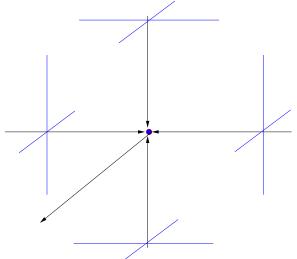
Consider a beam of unpolarized radiation propagating in plane of sky, incident on an electron think of as superposition of linear polarizations one along sightline, one in sky

Q: why is scattered radiation polarized? in which direction?

Q: now what if unpolarized beams from opposite directions?

scattering of one unpolarized beam:

- \rightarrow see radiation from e motion in sky plane
- \rightarrow linear polarization!

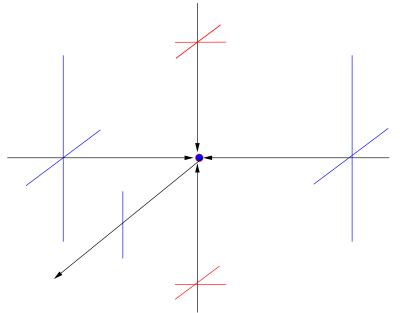

scattering of two unpolarized beams in opposite directions:

 \rightarrow the other side only adds to e motion in sky plane \rightarrow also linear polarization!

 \odot

Q: what if isotropic initial radiation field?

isotropic initial radiation field:



e motions in x and y sky directions cancel \rightarrow no net polarization

Q: what incident radiation fields do create polarization?

• Q: lesson?

if initial radiation field has quadrupole intensity pattern

linear polarization!

lesson: polarization arises from Thomson scattering when electrons "see" quadrupole anisotropies in radiation field

⁵ Q: If Thomson scattering is the only process acting what is the appropriate transfer equation?

Thomson Scattering in Radiation Transfer

recall: in *coherent scattering*

- photon number and energy preserved
- but directions changed

$$\frac{dI_{\nu}(\hat{n})}{ds} = -n_e \sigma_{\mathsf{T}} \left[I_{\nu}(\hat{n}) - S_{\nu}(\hat{n}) \right]$$

for scattering of unpolarized radiation, source is not isotropic!

$$S_{\nu}(\hat{n}) = \frac{1}{\sigma_T} \int I_{\nu}(\hat{n}') \frac{d\sigma}{d\Omega}(\hat{n}, \hat{n}') \frac{d\Omega'}{4\pi} = \frac{3}{16\pi} \int I_{\nu}(\hat{n}') \left[1 + (\hat{n} \cdot \hat{n}')^2\right] d\Omega'$$

where the *redistribution function*

$$\mathcal{R}(\hat{n}, \hat{n'}) = \frac{1}{4\pi\sigma_{\text{tot}}} \frac{d\sigma}{d\Omega} (\hat{n}, \hat{n'}) \stackrel{\text{Thom}}{=} \frac{3}{16\pi} \left[1 + (\hat{n} \cdot \hat{n'})^2 \right]$$

encodes the scattering directionality Q: what if scattering is isotropic?

if we approximate Thomson as isotropic, then

$$\frac{d\sigma}{d\Omega} \xrightarrow{\text{iso}} \sigma_{\mathsf{T}}/4\pi$$

and we recover our old result

$$S_{\nu} \xrightarrow{\text{iso}} J_{\nu} = \frac{1}{4\pi} \int I_{\nu} d\Omega$$
 (4)

for which the redistribution function is just

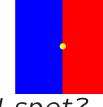
$$\mathcal{R}(\hat{n}, \hat{n'}) = \frac{1}{4\pi} \tag{5}$$

12

Awesomest Example of Thompson Polarization: the CMB

The CMB is nearly isotropic radiation field arises from $\tau s \sim 1$ "surface of last scattering" at $z \approx 1000$ when free e and protons "re" combined $e + p \rightarrow H + \gamma$

• before recombination:


<u>н</u> Ш Thomson scattering of CMB photons, Universe opaque

after recombination: no free *e*, Universe transparent
 the CMB is the cosmic photosphere!

electrons during last scattering see anisotropic radiation field

consider point at hot/cold "wall"

locally sees *dipole* T anisotropy

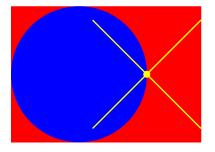
net polarization towards us: zero! Q: why? Q: what about edge of circular hot spot? cold spot?

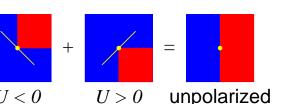
at wall: see local dipole

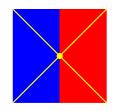
hot side horizontal and vertical contributions are equal!

 \rightarrow no net polarization! also follows from this

superposition


U > 0unpolarized U < 0


polarization tangential (ring) around hot spots radial (spokes) around cold spots (superpose to "+" = zero net pol)


WMAP polarization observations of hot and cold spots WWW:

Note: polarization & T anisotropies *linked*

 \rightarrow consistency test for CMB theory and hence hot big bang 14

Polarization Observed

First detection: pre-WMAP!
★ DASI (2002) ground-based interferometer
at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

Planck (March 2013): much more sensitive to polarization

Build Your Toolbox: Thomson Scattering

microphysics: matter-radiation interactions

- *Q: physical origin of Thomson scattering?*
- *Q: physical nature of sources?*
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of Thomson scattering *Q: where do we expect this to be important? Q: relevant EM bands? temperatures?*

Toolbox: Thomson Scattering

emission physics

- physical origin: scattering by non-relativistic free electrons
- physical sources: need free e⁻ → ionized gas scattering → photons conserved, need incident radiation scattering induces polarization even for unpolarized sources
- spectrum: Thomson coherent scattered energy unchanged σ_T indept of ν : spectral shape preserved in scattered radiation

astrophysical sources of Thomson scattering

- sites are illuminated and highly ionized gas: stellar interiors, stellar coronae, hot nebulae (Hii regions), early Universe
- EM bands radio to X-ray for γ -rays relativistic effects are important \rightarrow Compton
- i_1 temperatures up to ~ 10⁶ K above this, relativistic effects are important → Compton