
Astro 501: Radiative Processes

Lecture 18

October 8, 2018

Announcements:

• good news: no Problem Set due this week

bad news Miderm Exam in class Friday
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Midterm Exam

Time In class Friday October 12.

You will have the usual class time, 50 minutes

Topics

Everything up to and including Thomson scattering.

All material in Lectures 1–16 and Problem Sets 1-5 is fair game.

What to Bring

a pencil–or better, two pencils, and a calculator if you wish.

You may bring notes of any kind, but the exam is closed book.

Question Format

The homework questions point to important topics and questions. Given the exam time

constraints, the problems will enerally be less involved than in homework, but rather the

questions will emphasize an understanding of how to apply and interpret the tools we have

developed.
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Last Time: Bremsstrahlung

Q: what is it?

bremsstrahlung also know as free-free emission

Q: what does this refer to?

Q: what’s the basic physical picture?

Q: what interactions, trajectories are relevant?

Q: what does bremsstrahlung emission jν depend on?
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Bremsstrahlung = Free-Free Emission: Physical Picture

motion of free electrons

through a plasma of (free) ions

v b

Z

we approximate this as a series of

• two-body electron-ion scattering events

• unbound Coulomb trajectories: hyperbolæ

→ asymptotically free, scattered through small angle

• acceleration maximum at closest approach b

lasting for scattering time τ = b/v

• burst of radiation over this time, frequency ν ∼ 1/τ

So net effect is

• many scattering events

• a series of small-angle scatterings

• and radiation bursts at different frequencies

4



Our order-of-magnitude estimate for the emission coefficient

from nonrelativistic bremsstrahlung:

jν = ne
dPpere

dν
∼ e6Z2

mec3v
neni (1)

Q: notable features? what didn’t we get from order of mag?

Q: how can we do the classical calculation more carefully?
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Bremsstrahlung: Classical Calculation

Consider electron with initial speed v

with impact parameter b

moving fast enough so that

scattered through small angle

b

Z

v

R

dipole moment ~d = −e~R, with second derivative

~̈d = −e~̇v (2)

take Fourier transform

−ω2 ~̈d = − e

2π

∫ ∞

−∞
~̇v(t) eiωt dt (3)

where: ~v(t) is an unbound Coulomb trajectory:

→ hyperbola in space, complicated function of time

but: ~̇v(ω) simplifies in limiting cases

→ compare ω and collision time τ = b/v

Q: ωτ ≫ 1? ωτ ≪ 1?
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− ω2 ~̈d = − e

2π

∫ ∞

−∞
~̇veiωt dt (4)

but ~v(t) only changes on timescale τ :

for ωτ ≫ 1, many oscillations during acceleration

complex phase averages out: ~v(ω) → 0

for ωτ ≪ 1, complex exponent unchanged during accel

phase unimportant: ~v(ω) → ∫

~̇v dt = ∆~v

and thus only frequencies ω <∼ τ−1 = b/v contribute

and the dipole moment has

~d(ω) →
{

e
2πω2∆~v ωτ ≪ 1

0 ωτ ≫ 1
(5)
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Energy emitted per unit frequency at impact parameter b:

dW

dω
=

8πe2ω4 |d(ω)|2
3c3

→






2e2

3πc3
|∆~v|2 ωτ ≪ 1

0 ωτ ≫ 1
(6)

Now find ∆~v: for small deflection

∆v ≈ ∆v⊥ =

∫

Fz dt (7)

=
Ze2

me

∫

b

(b2 + v2t2)3/2
dt (8)

=
2Ze2

mebv
(9)

b

Z

v

R
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Dipole formula give energy emitted per electron

scattering at b

dW (b)

dω
=







8Z2e2

3πc3m2
evb2

ωτ ≪ 1

0 ωτ ≫ 1
(10)

to include all impact parameters b:

weight by collision rate

dNi/dt = 2πniv b db per electron

gives power emitted power per volume

ni

b

ds = v dt
db

dW (b)

dV dω dt
= ne

dW

dω

dNi

dt
= 2πneni

∫ bmax

bmin

dW (b)

dω
b db (11)

Q: what will be b dependence?
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using low-frequency result:

qν = 4πjν =
dW

dV dω dt
=

16Z2e6

3πc3m2
ev

neni ln

(

bmax

bmin

)

(12)

compare/contrast with order-of-magnitude:

• jν ∝ neni: linear scaling with e and ion density

• jν ∝ 1/v scaling

• independence of b range → log dependence

• independence with ν, ω: “flat” emission spectrum
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Impact Parameter Range

bremsstrahlung emission at speed v, frequency ω

depends logarithmically on the limits

bmin, bmax of impact parameter

within our classical, small-angle-scattering treatment

lower limit

• quantum mechanics: ∆x ∆p >∼ h̄

→ b
(1)
min > h/mv

• small-angle: ∆v/v ∼ Ze2/bmv2 < 1

→ b
(2)
min > Ze2/mv2

upper limit

for a fixed ω and v, max impact parameter is bmax ∼ v/ω

fortunately: log dependence on limits

→ results not very sensitive to details of choices
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Single-Velocity Bremsstrahlung

convenient, conventional form for bremsstrahlung emission

also known as free-free emission

4π jω(ω, v) =
16π

3
√

3

Z2e6

m2
e c3v

nine gff(ω, v) (13)

eeq

uses the dimensionless correction factor or Gaunt factor

gff(ω, v) =

√
3

π
ln

(

bmax

bmin

)

(14)

• accounts for log factor

• typically gff ∼ 1 to few

• tables and plots available

www: awesome astrophysical example

Q: how does this differ from our treatment?
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Thermal Bremsstrahlung

so far: calculated bremsstrahlung emission for

a single electron velocity v

→ a “beam” of mono-energetic electrons

but in real astrophysical applications

there is a distribution of electron velocities

usually: a thermal distribution

so we wish to find

the mean or expected emission
〈

jν,brem

〉

for a thermal distribution of velocities

Q: order-of-magnitude expectation?
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Thermal Bremsstrahlung: Order-of-Magnitude

order-of-magnitude emission for single v:

jν ∼ e6Z2

mec3v
neni (15)

i.e., jν ∼ 1/v

thus, thermal average

〈jν〉 ∼
Z2e6

mec3vT
neni (16)

with vT a typical thermal velocity

find vT from equipartition: mev2
T ∼ kT → vT ∼

√

kT/me

Q: how do we approach the honest, detailed calculation?

Q: yet more new formalism?
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Thermal Particles: Non-Relativistic Limit

recall: semiclassically, particle behavior in phase space (~x, ~p)

described by distribution function f :

• Heisenberg: minimum phase-space “cell” size dx dp = h

• particle number dN = g/h3 f(~x, ~p) d3~x d3~p

a dilute=non-degenerate, non-relativistic particle species

of mass m at temperature T

has distribution function

ftherm(p) ∝ e−p2/2mT (17)

and thus has number density n ∝ ∫

e−p2/2meTd3~p ∝ ∫

e−mev2/2kTd3~v

Q: how to compute thermal averaged bremsstrahlung emission?
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Bremsstrahlung emissivity depends on electron properties via

jν(ν, T) = 〈jν(ν, v)〉 ∝
〈

gff(ν, v) ne

v

〉

(18)

where
〈

gff(ω, v) ne

v

〉

∼
∫ ∞

vmin

gff(ω, v)

v
e−mev2/2kT d3~v (19)

Note lower limit vmin at fixed ν

→ minimum electron velocity needed to radiate photon

of energy ν

Q: what value should this have? effect on final result?
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energy conservation: to make photon of frequency ν
electron needs kinetic energy mev2/2 > hν, so

vmin =

√

2hν

me
(20)

thus exponential factor has

e−
mev2

2kT = e−
mev2

min
2kT e−

me(v2−v2
min

)

2kT = e−
hν
kT e−

me(v2−v2
min

)

2kT

→ overall factor e−hν/kT in thermal average

→ photon production thermally suppressed at hν > kT

thermal bremsstrahlung = “free-free” emission result:

4πjν,ff(T) =
25π Z2 e6

3 mec3

(

2π

3mekT

)1/2
ḡff(ν, T) e−hν/kT ne ni

(21)

with ḡff(ν, T) the velocity-averaged thermal Gaunt factor

Q: spectral shape for optically thin plasma? implications?

Q: integrated emission?
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4πjν,ff(T) =
25π Z2 e6

3 mec3

(

2π

3mekT

)1/2
ḡff(ν, T) e−hν/kT ne ni (22)

main frequency dependence is jν ∝ e−hν/kT

→ flat spectrum, cut off at ν ∼ kT/h

→ can use to determine temperature of hot plasma (PS6)

integrated bremsstrahlung emission:

4πjff(T) = 4π
∫

jν,ff(T) dν (23)

=
25π Z2 e6

3 hmec3

(

2πkT

3me

)1/2

ḡB(T) e−hν/kT ne ni (24)

= 1.4 × 10−27 erg s−1 cm−3 ḡB

(

T

K

)

1
2
(

ne

1 cm−3

) (

ni

1 cm−3

)

with ḡB(T) ∼ 1.2 ± 0.2 a frequency-averaged Gaunt factor

Q: all of this was for emission–what about the thermal bremsstrahlung

absorption coefficient?
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