Astro 501: Radiative Processes
 Lecture 20
 October 15, 2018

Announcements:

- Problem Set 6 due Friday as usual
- Midterm: grading elves hard at work

Before exam: began atomic structure

Hydrogen Atom: Honest Non-Relativistic Results

non-relativistic Schrödinger ignores relativistic effects

- electron (and proton) spins absent from Hamiltonian \rightarrow electron orbit properties independent of spin
for hydrogen-like species: single electron, nuclear charge Z
ground state properties
- energy $E_{1}=-Z^{2} e^{4} m_{e} / 2 \hbar^{2}$
- mean radius $\left\langle r_{1}\right\rangle=a_{0} / Z$
- electron expected speed $\left\langle v_{1}\right\rangle=Z e^{2} / \hbar=Z \alpha c$ so that $\beta_{1}=v_{1} / c=Z \alpha \approx Z / 137 \ll 1$ for most atoms if not: non-relativistic is bad approximation!
N
Q: what about excited states: how many?
Q : how do E_{n}, r_{n}, v_{n} vary with n ?
excited states, ignoring spin effects (non-relativistic): for each integer $n=1,2,3, \ldots$
- $E_{n}=E_{1} / n^{2}$
- $\langle r\rangle_{n}=n^{2} r_{1}$
- $\langle v\rangle_{n}=v_{1} / n$

Lessons

- H has an infinite "tower" of bound states
- $\langle r\rangle_{n} \propto n^{2}$: principal quantum number n controls radial part of wavefunction
- as $n \rightarrow \infty$: bigger radius, slower, more weakly bound
hydrogen wavefunction: 3-D system \rightarrow need 3 quantum numbers
ω_{ω} Q: what are the other two?

Non-relativistic hydrogen wavefunction: states specified by

- principal quantum number $n=1,2, \ldots$
controls wavefunction dependence on r
- orbital angular momentum $\ell=0,1, \ldots, n-1$

$$
\widehat{L}^{2} \psi=\ell(\ell+1) \hbar^{2} \psi
$$

controls wavefunction dependence on θ

- z-projection $\widehat{L}_{z} \psi=m \hbar \psi$ with $m=-\ell, \ldots,+\ell$ controls wavefunction dependence on ϕ
in non-relativistic case: energy only depends on n all states with fixed n are degenerate (same energy)
- at each ℓ value: $2 \ell+1$ "substates" of different m
- each of which has 2 possible e spin states: $s_{z}= \pm 1 / 2$
- at each n : a total of $2 \sum_{\ell=0}^{n-1} 2 \ell+1=2 n^{2}$ states all with the same energy

Q: effect of full relativistic treatment?

Realistic Atoms

for hydrogen
Schrödinger: $v_{n} / c=\alpha / n \ll 1,\left|E_{n}\right|=\alpha m_{e} c^{2} / 2 \ll m_{e} c^{2}$
\rightarrow electron motion is (very) non-relativistic: approx justified!
\rightarrow expect relativistic corrections to be small

Full relativity: Dirac equation
Hamiltonian includes spins of electron and proton new interactions are $\alpha \beta=v / c$ or $\beta^{2} \rightarrow$ small corrections
\rightarrow lifts degeneracy of levels at same n

Multi-Electron Atoms

in first (i.e., non-relativistic) approximation

- principal quantum number n still appears
- spins do not appear in Hamiltonian \rightarrow atom state only depends on total orbital angular momentum quantum number L
- due to Pauli \rightarrow atom state still does depends on total electron spin quantum number S
- states with same n, L and S are degenerate
for realistic multi-electron atoms spin interactions are relativistic perturbations break ("lift") degeneracy at same n, L, S

To a good first approximation:

- wavefunction (state) of each electron is independent of other electrons
- except that Pauli principle is crucial Q : how?

Building Atoms

Pauli: no two (or more) fermions
can occupy the same quantum state
electrons are fermions, each with $s=1 / 2$
\rightarrow projection $s_{z}= \pm 1 / 2$ adds one last quantum number
"assembly" of multi-electron atoms, to first approximation,

- state of each electron has fixed n and ℓ with $\ell=0,1, \ldots, n-1$ (like H -atom)
- but order of state energies not always like H-atom
- states "filled" from lowest energy up, according to Pauli
- fill by "subshells" = states with same (n, ℓ) while "shells" are all states at fixed n
- atom ground state: electrons in lowest possible states
electron configuration: distribution of states in atom
- notation: (n, ℓ) electron state ("subshell") is $n \Upsilon$ with $\Upsilon=s, p, d, f, \ldots$ for $\ell=0,1,2,3, \ldots$
- multiplicity: if k electrons in subshell: $n \Upsilon^{k}$
for example:
- lowest shell is $(n, \ell)=(1,0)$
$\ell=0$ has only $m=0$; so filled shell is $1 s^{2}$
- next subshell is $(n, \ell)=(2,0)$; filled is $2 s^{2}$
- then $(n, \ell)=(2,1): \ell=1, p$ state $m=-1,0,1$ allowed, so filled subshell is $2 p^{6}$
www: sketches of ℓ states in 3D

Q: how do we know the order of filling states?
that is: what determines the ranking of energy levels?

Energy Level Rankings

electron configuration $=$ set of single-electron states for atom ground state is the set that places electrons in the lowest possible energies consistent with Pauli each subshell filled before beginning next shell
empirical rules of thumb: good for atoms of low Z most of interest to astrophysics
"Aufbau principle" - (n, ℓ) ordering
\triangleright states filled in order of increasing $n+\ell$
\triangleright when two states have same $n+\ell$ filled in order of increasing n, i.e., lowest n first

Q: Li states $(Z=3)$? $C(Z=6$? $)$ Si $(Z=14)$?
\triangleright states filled in order of increasing $n+\ell$
\triangleright when two states have same $n+\ell$ filled in order of increasing n
lithium: $Z=3$
filled $1 s^{2}=2$ states, $2 s^{1}$ half-filled: $1 s^{2} 2 s$
carbon: $Z=6$
filled: $1 s^{2} 2 s^{2}=4$ states, $2 p^{2}$ partial $=2$ states
$1 s^{2} 2 s$
silicon: $Z=14$
filled: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}=12$ states, $3 p^{2}$ partial $=2$ states $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
www: online data

Aufbau principle gives ordering of (n, ℓ) subshells further splitting at fixed (n, ℓ) depending on electron spins
recall: total atomic angular momentum $\vec{J}=\vec{L}+\vec{S}$ sums

- total e orbital angular momenta \vec{L}, eigenstates $\hbar L$ total e spins \vec{S}, eigenstates $\hbar S$
- filled subshells have $L_{\text {shell }}=0=S_{\text {shell }}$
so L and S set only by unfilled subshells

Hund's Rule

Hund's rule: energy level orderings in (n, ℓ) subshell for a fixed electron configuration $=$ fixed unfilled (n, ℓ) subshell then the lowest energy state(s) are the one(s) with
\triangleright the largest possible total spin S
\triangleright the largest possible total L for this maximal S
\triangleright for subshells half-filled our less: pick lowest J otherwise pick highest J
Q : for $n p^{2}$, which L, S has lowest energy? what J does this have?
for $n p^{2}$: 2 electrons, each with $\ell=1$
possible states: $m=-1,0,+1, s_{z}= \pm 1 / 2$
lowest energy is
the largest possible total spin S
this is $S=1$, gotten for $s_{z 1}=s_{z 1}$ and so $S_{z}= \pm 1$
\square the largest possible total L
Pauli: cannot both be $m= \pm 1$, not same m, s_{z} : can't have $L=2$ maximal L when $m_{1}=1$ and $m_{2}=0$ (or $m_{1}=-1$ and $m_{2}=0$) $\rightarrow L=1$
\triangleright for subshells half-filled our less: pick lowest J since $J \in(|L-S|, L+S)$, here \min at $J=0$

Spectroscopic Notation for (L, S, J) states or "terms" ${ }^{2 S+1} \mathcal{L}_{J}$, with $\mathcal{L}=S, P, D, \ldots$ for $L=0,1,2, \ldots$
here: $n p^{2}$ lowest-energy state has $(L, S, J)=(1,1,0)={ }^{3} P_{0}$
www: online data

Hund's Rules: Physical Origin

then the lowest energy state(s) are the one(s) with
\triangleright the largest possible total spin S
largest $S \rightarrow$ preference for spins aligned
but then Pauli demands different m
\rightarrow fill m states with one e each before "doubling up"
\rightarrow "bus seat rule"
\triangleright the largest possible total L for this maximal S
largest $L \rightarrow$ preference for orbit planes aligned orbit in "same direction" and not opposite $\rightarrow e$ avoid each other, have nucleus in between
\rightarrow decrease e screening of nuclear charge, and e repulsion

Atomic Fingerprints

atomic wavefunctions, states are complex function of nuclear charge and number of electrons \rightarrow resulting energy levels unique to each atom and to each ionization state, e.g., $\mathrm{C}^{3+} \equiv \mathrm{C}$ iv
lesson: atomic spectra are "fingerprints" observed lines can pin down identity and ionization state of emitting atom
sometimes even the mere existence of an element tells an important story
1950's: technetium (Тc) detected in some AGB stars
↔ Q: what's an AGB star?
Q: why is it s Big Deal to find Tc in them?

