
Astro 501: Radiative Processes

Lecture 21

October 17, 2018

Announcements:

• Problem Set 6 due next time

• Problem 1 is simplified view of intracluster medium

real data more complex, as noted in paper

can view HW problem as test of simple model

• Perseus fig 5 plots flux as ǫFǫ = νFν

• Part 1 (e): for optical depth, pick 1-2 observed energies

where you expect the highest effect

• Problem 2(b): only 40 lowest energy states

2(c): can plot instead of sketch!

• Midterm: grading elves still hard at work
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Last Time: Building Atoms

big picture: need to understand atomic states

to understand transitions between then:

→ there are lines we may observe

thus far: ignoring spin, levels depend on n, ℓ

Q: what do these measure?

Q: rules for filling states?
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Energy Level Rankings

electron configuration = set of single-electron states

for atom ground state is the set that places electrons

in the lowest possible energies consistent with Pauli

each subshell filled before beginning next shell

empirical rules of thumb: good for atoms of low Z

most of interest to astrophysics

“Aufbau principle” – (n, ℓ) ordering

⊲ states filled in order of increasing n + ℓ

⊲ when two states have same n + ℓ

filled in order of increasing n, i.e., lowest n first

Q: Li states (Z = 3)? C (Z = 6?) Si (Z = 14)?
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⊲ states filled in order of increasing n + ℓ

⊲ when two states have same n + ℓ

filled in order of increasing n

lithium: Z = 3

filled 1s2 = 2 states, 2s1 half-filled: 1s22s

carbon: Z = 6

filled: 1s22s2 = 4 states, 2p2 partial = 2 states

1s22s

silicon: Z = 14

filled: 1s22s22p63s2 = 12 states, 3p2 partial = 2 states

1s22s22p63s23p2

www: online data
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Aufbau principle gives ordering of (n, ℓ) subshells

further splitting at fixed (n, ℓ) depending on electron spins

recall: total atomic angular momentum ~J = ~L + ~S sums

• total e orbital angular momenta ~L, eigenstates h̄L

total e spins ~S, eigenstates h̄S

• filled subshells have Lshell = 0 = Sshell

so L and S set only by unfilled subshells
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Hund’s Rule

Hund’s rule: energy level orderings in (n, ℓ) subshell

for a fixed electron configuration = fixed unfilled (n, ℓ) subshell

then the lowest energy state(s) are the one(s) with

⊲ the largest possible total spin S

⊲ the largest possible total L for this maximal S

⊲ for subshells half-filled our less: pick lowest J

otherwise pick highest J

Q: for np2, which L, S has lowest energy? what J does this have?
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for np2: 2 electrons, each with ℓ = 1

possible states: m = −1,0,+1, sz = ±1/2

lowest energy is

⊲ the largest possible total spin S

this is S = 1, gotten for sz1 = sz1 and so Sz = ±1

⊲ the largest possible total L

Pauli: cannot both be m = ±1, not same m, sz: can’t have L = 2

maximal L when m1 = 1 and m2 = 0 (or m1 = −1 and m2 = 0)

→ L = 1

⊲ for subshells half-filled our less: pick lowest J
since J ∈ (|L − S|, L + S), here min at J = 0

Spectroscopic Notation for (L, S, J) states or “terms”
2S+1LJ, with L = S, P, D, . . . for L = 0,1,2, . . .
here: np2 lowest-energy state has (L, S, J) = (1,1,0) = 3P0

www: online data
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Hund’s Rules: Physical Origin

then the lowest energy state(s) are the one(s) with

⊲ the largest possible total spin S

largest S → preference for spins aligned

but then Pauli demands different m

→ fill m states with one e each before “doubling up”

→ “bus seat rule”

⊲ the largest possible total L for this maximal S

largest L → preference for orbit planes aligned

orbit in “same direction” and not opposite

→ e avoid each other, have nucleus in between

→ decrease e screening of nuclear charge, and e repulsion8



Atomic Fingerprints

atomic wavefunctions, states are complex function of

nuclear charge and number of electrons

→ resulting energy levels unique to each atom

and to each ionization state, e.g., C3+ ≡ C IV

lesson: atomic spectra are “fingerprints”

observed lines can pin down identity and ionization state

of emitting atom

sometimes even the mere existence of an element

tells an important story

1950’s: technetium (Tc) detected in some AGB stars

Q: what’s an AGB star?

Q: why is it s Big Deal to find Tc in them?
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Thermal Population of Atomic States

if atoms can interact, e not necessarily all in ground state

in general: a big job to calculate population of atomic states

but as usual: much simplification if thermodynamic equilibrium

Boltzmann: consider a single atomic state having energy Ei

for an ensemble of ntot atoms in thermodynamic equilibrium at

T

the population = numbers ni of atoms in state i is

ni =
ntot

Z
e−Ei/kT (1)

interpret pi = e−Ei/kT/Z as the probability that an atom

is found in state i

Q: how do we find the normalization constant Z?
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each state has population ni, and if we sum all states

must recover total population n, so

ntot =
∑

states i

ni
ntot

Z

∑

states i

e−Ei/kT (2)

and thus we find the partition function

Z =
∑

states i

e−Ei/kT (3)

and thus pi = e−Ei/kT/
∑

j e−Ej/kT and clearly
∑

i pi = 1

1
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in many cases, more than one atomic state has energy Ei

let the number of states with Ei be gi

i.e., gi counts the “degeneracy” at level Ei

then the number of states with energy Ei is

n(Ei) = gi
n

Z
e−Ei/kT (4)

and the partition function can be written

Z =
∑

levels Ei

gie
−Ei/kT (5)

consider two states of energies E1, E2 > E1

for an ensemble of atoms in thermodynamic equilibrium at T

the populations = numbers n1, n2 of atoms the states

is given by
n2

n1
=

g2
g1

e−(E2−E1)/kT (6)
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note that for a given atomic system and temperature T

the partition function Z =
∑

states gie
−Ei/kT is a number

Q: physical dimensions of Z?

Q: what does this number represent physically? hint: roughly at

what levels does the sum effectively terminate?

Q: what is Z as kT → 0?
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roughly:

the partition function counts all states with Ei
<∼ kT

so Z ≈ number of states with Ei
<∼ kT

→ i.e., “partitions” full set of atomic states

into those “accessible” at T

as kT → 0: all states suppressed except ground state E1 = 0

so Z → g1, the degeneracy of the ground state

consider the partition function for atomic hydrogen

where En = −B/n2, with B = |E1| = e4me/2h̄2, the binding

energy

recalling that the shell each n has degeneracy gn = 2n2:

Z(H) = 2
∞
∑

n=1

n2eβB/n2
(7)

where β = 1/kT

Q: roughly what is the value of Z(H)? why? implications?
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neutral hydrogen partition function, with β = 1/kT

Z(H) = 2
∞
∑

n=1

n2eβB/n2
(8)

eβB/n2 → 1 for large n, so

Z(H) ≈ 2
∞
∑

large n

n2 ∼ n3
max → ∞ (9)

infinite partition function!

but what does this mean?!
strictly: probability to be in state i is pi ∝ 1/Z = 0?!
that is: high probability to be at high n

physically: if H atoms in equilibrium with a thermal bath at T
and all states n are accessible
then eventually all atoms fluctuate to high n → ionized!

this can’t be right! atoms do exist! Q: what’s the fix?

1
5



Partition Function Cutoff

We implicitly assumed that we could carry our sum

out to arbitrarily large n

While it is true that atomic H has such states

recall rn = n2a0: high-n states are physically large!

physically, real e orbits in an H atom cannot extend

beyond the nearest-neighbor H atom

which typically lies at distance dmax such that nHd3 ∼ 1

or dmax ∼ n
−1/3
H

setting dmax = n2
maxa0, we estimate

nmax ∼
√

dmaxa0 ∼
(

a3
0nH

)−1/6 ∼ 104

(

nh

1 atom/cm3

)−1/6

(10)

but: a very Wild West estimate! real physics is more complex...
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