
Astro 501: Radiative Processes

Lecture 22

October 19, 2018

Announcements:

• Problem Set 7 due now

• Problem Set 6 due next Friday

Last time: thermodynamics of atomic states

Q: ratio of 2p to 1s states in hydrogen at T?
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Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at T

ionization and recombination both occur

H + γ ↔ p+ e (1)

and the number densities ne, np, and nH adjust themselves

until the recombination and ionization rates are equal

this equilibrium determines a relationship among the densities

which we want to find

Method I (R&L):

starting point–the ratio of free electrons at speed v

to neutral hydrogen atoms in the ground state

δn+(v)

nH
=
δg(v)

gH
e−[Ee(v)−E1]/kT =

δg(v)

gH
e−(B+mev2/2)/kT (2)

where B = −E1 is hydrogen binding energy
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Boltzmann gives

δn+(v)

nH
=
δg(v)

gH
e−(B+mev2/2)/kT (3)

and with statistical weight

g(v) = gp ge (4)

= 2gp
dx dy dz dpx dpy dpz

h3
(5)

where electron volume element chosen so that

number density ne = 1/d3~x = 1/dxdydz, and thus

np

nH
=

4π

h3ne

gp

gH

∫

e−(B+p2e/2m)/kT p2 dp (6)

=
4π

ne

gp

gH

(

2kT

meh2

)3/2

e−B/kT
∫ ∞

0
e−x

2
x2 dx (7)
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and we arrive at the Saha equation

nenp

nH
=
gegp

gH

(

2π
memp

mH

kT

h2

)3/2

e−BH/kT (8)

where hydrogen binding energy

BH = (me +mp −mH)c2 = 13.6 eV

Q: behavior at high T? low T? does this make sense?
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The Saha Equation

define ionization fraction

xe =
ne

ntot
(9)

with total electron number density ntot = ne + nH

using ne = np (charge neutrality):

x2e
1 − xe

≈
2(2πmekT/h2)3/2

ntot
e−BH/kT =

nQ,e

ntot
e−BH/kT (10)

for kT ≫ BH, xe → 1: (nearly) fully ionized

for kT ≪ BH, xe ≪ 1: (nearly) fully neutral

but note that, e.g., temperature at which xe = 1/2

also depends on particle density ntot
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Awesome Saha Example: Cosmic Recombination

the early universe: hot!

kT ≫ BH → totally ionized, xe → 1

present-day universe: on average, cold!

T = 2.725 K → if no stars, U would be neutral, xe → 0

thus there was a transition: (re)combination

our mission: estimate Trec = when cosmic xe = 1/2

Q: näıve, zeroth order estimate?

Q: how to improve?
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näıvely, expect recombination when kTrec ∼ BH
with BH = 13.6 eV, this gives

Trec,naive = BH/k ∼ 120,000 K

but we can do better using Saha

exponential dependence on BH, but also

dependence on ntot

big-bang nucleosynthesis teaches∗ us that

the cosmic baryon-to-photon ratio is

η ≡
nb

nγ
= 6 × 10−10 (11)

most baryons are hydrogen, so ntot ∼ nb
and thus there are many photons for each p and e

Q: anticipated effect on Trec? higher or lower than Trec,naive?

∗How? find out next semester in Nuclear and Particle Astrophysics!
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many photons per p and e → very easy to ionize H

• when kT < BH, there are still many photons

in Wien tail with hν > BH
• thus expect Trec < Trec,naive

in detail:

recall that nγ ∼ (kT/hc)3, so

ntot ∼ ηnγ ∼ η(kT/hc)3 (12)

and so Saha becomes

x2e
1 − xe

∼
1

η

(

mec2

kT

)3/2

e−BH/kT (13)

note: 1/η ≫ 1 and mec2/kT ≫ 1

so when xe = 1/2 we have (PS 7)

Trec ≃ Trec,naive/40 ∼ 3000 K

kTrec ≃ 0.3 eV ≪ BH
and thus 1 + zrec = Trec/T0 ∼ 1000
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Saha Generalized

can generalize Saha to get ionization equilibrium

for any species having a+ + e↔ a0 + γ

n+ne

n0
=
g+ge

g0

(

2π
mem+

m0

kT

h2

)3/2

e−B/kT (14)

with B the binding energy
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Radiative Transitions
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Radiative Transitions

so far: thermal populations of bound states

now: transitions between states

leading to emission/absorption

we want a qualitative and quantitative understanding

qualitatively:

• what is the basic physics?

• selection rules: which transition are allowed?

quantitatively:

Q: what do we want to know?1
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quantitatively:

we want to describe the strength of transitions

in particular, the usual radiation transfer quantities

• emission coefficient jν
• absorption coefficient αν

these are closely related to Einstein coefficients

• Aif spontaneous emission rate per atom for i→ f

• Bif stimulated emission coefficient

• Bfi true absorption coefficient

recall: we found that, for hνif = Ei − Ef

jν =
hνif Aif

4π
ni φ(ν) (15)

αν =
hνif

4π

(

Bfinf −Bifni
)

φ(ν) (16)

(17)

with φ(ν) the line profile function

1
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Radiative Transitions: Eigenstates are Forever?

Reall the quantum mechanics of bound systems, e.g., H atom

controlled by Hamiltonian operator Ĥ = p̂2/2m+ V (r̂)

with V the potential binding the constituents

wavefunctions are energy eigenstates HΨn = EnΨn

with Ψn(~r, t) = ψn(~r)e−iEht/h̄

Note:

• electron probability in space dP/d~r = |Ψ(~r)|2

for eigenstate: dP/d~r = |ψn(~r)|2 is independent of time

• expectation values within eigenstate also time independent

e.g., 〈~r〉 =
∫

|ψ(~r)|2 ~r d3~r

• thus expected dipole moment
〈

~d
〉

= e 〈~r〉

also time independent

Q: implications for eigenstate evolution? for radiation?

Q: Whaaa? how can it be that atoms radiate at all??
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Spontaneous Emission: Dipole Approximation

for unperturbed bound system: once in any eigenstate

• stay there forever! including in excited states!

• no changing dipole moment (or change in any higher moments)

→ no radiation!

but if an external perturbation is present

wavefunction mixes states

Q: what could be the source of perturbation?
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A Quantum Vacuum is Not Boring!

External perturbation needed to drive transitions in bound states

but luckily: one source is guaranteed!

the electrogmagnetic field is quantized!

• closely analogous to simple harmonic oscillator

where H = p2/2m+mω2x2/2 leads to

quantized states En = (n+ 1/2)h̄ω
ground state n = 0: ψ0 6= 0! zero point energy E0 = h̄ω/2!

• EM field Hamiltonian H = (E2 +B2)/8π
for experts, true analogy is potentials: H ∼ Ȧ2 + (∇A)2 ∼ Ȧ2

ω + ω2A2
ω

leads to quantized states, each with E = h̄ω
but also zero point fluctuations for n = 0 quanta!

Lessons:

• EM vacuum: ground state (n = 0). Not empty!

• vacuum fluctuations inevitable, always present

• perturbs bound systems, drives transitions

1
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Director’s Cut Extras

1
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The Road to Saha: Method II–Chemical Equilibrium

recall that the number of states for a particle

is related to its distribution function f via

dN =
g

h3
f d3x d3p (18)

where f counts states in phase space

i.e., translational degrees of freedom

and where g counts internal degrees of freedom

e.g., for a free electron, ge = 2se + 1 = 2

a particle species in thermal (in fact, kinetic) equilibrium

at T has

f =
1

e(E−µ)/kT ± 1
(19)

where ± ↔ fermion/boson

and E(p) =
√

(cp)2 + (mc2)2
nonrel
= mc2 + p2/2m

and where µ is the chemical potential (more on this soon)
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distribution function, ± ↔ fermion/boson

f =
1

e(E−µ)/kT ± 1
(20)

for nonrelativistic, nondegenerate gasses of interest, f ≪ 1

→ e(E−µ)/kT ≫ 1, and thus we get

Maxwell-Boltzmann, same for fermions and bosons

f ≈ fMB = e(mc
2−µ)/kTe−p

2/2mkT (21)

and thus number density is

n =
g

h3

∫

d3p f = g

(

2πmkT

h2

)3/2

e(mc
2−µ)/kT (22)

thus n(T, µ): density depends not only on T

but also on chemical potential(?)1
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nonrelativistic particle density

n(T , µ) =
g

h3

∫

d3p f = g

(

2πmkT

h2

)3/2

e(mc
2−µ)/kT (23)

if chemists invented µ, isn’t it boring? Fair question, but no!

chemical potential µ: bad name, important quantity

consider a particle species with µ = 0

Q: effect on n if T changes?

Q: what would it be like if air in this room obeyed this rule?

Q: so what does it mean physically if µ = 0?

Q: so what does it mean physically if µ 6= 0?
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Chemical Potential

if µ = 0:

density obeys n(T) = g nq(T) e−mc
2/kT

with the quantum concentration nq = (2πmkT/h3)3/2

→ density is a fixed, universal function of T

→ all µ = 0 gasses have same density at same T !?

furthermore:

• since nonrel, kT ≪ mc2 → n small!

• but n is an increasing function of T

→ so in fixed volume, raising T adds new particles!

lesson: particles with µ = 0 are not conserved!

in fact, we already saw a (relativistic) example: photons!

recall Planck dist func f = 1/(eE/kT − 1): boson with µ = 0

2
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we are usually interested in species that are conserved

e.g., protons, neutrons conserved due to baryon number

electrons conserved due to charge and lepton number

in that case: non-relativistic equilibrium density

determined not by temperature, but by conservation law

ncons = g nq e−(mc2−µ)/kT (24)

this sets value of µ

Why is all of this useful?!

because in a reaction a+ b↔ c+ d

the chemical potentials of each species

are related by

µa + µb = µc + µd (25)

Q: so what about the case p+ e↔ H + γ?
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for p+ e ↔ H + γ, we have

µp + µe = µH (26)

because µγ = 0

using this and ni = ginQe
−(mic

2−µi)/kT , we have

the Saha equation

nenp

nH
=
gegp

gH

(

2π
memp

mH

kT

h2

)3/2

e−BH/kT (27)

where hydrogen binding energy

BH = (me +mp −mH)c2 = 13.6 eV

Q: behavior at high T? low T? does this make sense?2
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