Astro 501: Radiative Processes Lecture 22 October 19, 2018

Announcements:

- Problem Set 7 due now
- Problem Set 6 due next Friday

Last time: thermodynamics of atomic states Q: ratio of 2p to 1s states in hydrogen at T?

Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at ${\cal T}$ ionization and recombination both occur

$$\mathsf{H} + \gamma \leftrightarrow p + e \tag{1}$$

and the number densities n_e , n_p , and n_H adjust themselves until the recombination and ionization rates are equal

this equilibrium determines a relationship among the densities which we want to find

Method I (R&L): starting point—the ratio of free electrons at speed vto neutral hydrogen atoms in the ground state

N

$$\frac{\delta n_{+}(v)}{n_{\rm H}} = \frac{\delta g(v)}{g_{\rm H}} e^{-[E_e(v) - E_1]/kT} = \frac{\delta g(v)}{g_{\rm H}} e^{-(B + m_e v^2/2)/kT}$$
(2)
where $B = -E_1$ is hydrogen binding energy

Boltzmann gives

$$\frac{\delta n_{+}(v)}{n_{\rm H}} = \frac{\delta g(v)}{g_{\rm H}} e^{-(B + m_e v^2/2)/kT}$$
(3)

and with statistical weight

$$g(v) = g_p g_e$$
(4)
= $2g_p \frac{dx dy dz dp_x dp_y dp_z}{h^3}$ (5)

where electron volume element chosen so that number density $n_e = 1/d^3 \vec{x} = 1/dx dy dz$, and thus

$$\frac{n_p}{n_{\rm H}} = \frac{4\pi}{h^3 n_e} \frac{g_p}{g_{\rm H}} \int e^{-(B + p_e^2/2m)/kT} p^2 dp \tag{6}$$

$$= \frac{4\pi}{n_e} \frac{g_p}{g_{\rm H}} \left(\frac{2kT}{m_e h^2}\right)^{3/2} e^{-B/kT} \int_0^\infty e^{-x^2} x^2 dx \tag{7}$$

ω

and we arrive at the Saha equation

$$\frac{n_e n_p}{n_{\rm H}} = \frac{g_e g_p}{g_{\rm H}} \left(2\pi \frac{m_e m_p kT}{m_{\rm H}} \frac{kT}{h^2} \right)^{3/2} e^{-B_{\rm H}/kT}$$
(8)

where hydrogen binding energy $B_{\rm H} = (m_e + m_p - m_{\rm H})c^2 = 13.6 \text{ eV}$

Q: behavior at high *T*? low *T*? does this make sense?

The Saha Equation

define ionization fraction

$$x_e = \frac{n_e}{n_{\text{tot}}} \tag{9}$$

with total electron number density $n_{tot} = n_e + n_H$ using $n_e = n_p$ (charge neutrality):

$$\frac{x_e^2}{1-x_e} \approx \frac{2(2\pi m_e kT/h^2)^{3/2}}{n_{\text{tot}}} e^{-B_{\text{H}}/kT} = \frac{n_{\text{Q},e}}{n_{\text{tot}}} e^{-B_{\text{H}}/kT}$$
(10)
for $kT \gg B_{\text{H}}, x_e \rightarrow 1$: (nearly) fully ionized
for $kT \ll B_{\text{H}}, x_e \ll 1$: (nearly) fully neutral

but note that, e.g., temperature at which $x_e = 1/2$ ^{or} also depends on particle density n_{tot}

Awesome Saha Example: Cosmic Recombination

the early universe: *hot!* $kT \gg B_{\rm H} \rightarrow$ totally ionized, $x_e \rightarrow 1$

present-day universe: on average, *cold!* $T = 2.725 \text{ K} \rightarrow \text{ if no stars, U would be neutral, } x_e \rightarrow 0$

thus there was a transition: (re)combination our mission: estimate T_{rec} = when cosmic $x_e = 1/2$

Q: naïve, zeroth order estimate? Q: how to improve?

σ

naïvely, expect recombination when $kT_{\rm rec} \sim B_{\rm H}$ with $B_{\rm H} = 13.6$ eV, this gives $T_{\rm rec,naive} = B_{\rm H}/k \sim 120,000$ K

but we can do better using Saha exponential dependence on $B_{\rm H}$, but also dependence on $n_{\rm tot}$

big-bang nucleosynthesis teaches* us that the cosmic baryon-to-photon ratio is

$$\eta \equiv \frac{n_{\rm b}}{n_{\gamma}} = 6 \times 10^{-10} \tag{11}$$

most baryons are hydrogen, so $n_{tot} \sim n_b$ and thus there are many photons for each p and e

Q: anticipated effect on T_{rec} ? higher or lower than $T_{rec,naive}$?

 $\overline{}$

^{*}How? find out next semester in Nuclear and Particle Astrophysics!

many photons per p and $e \rightarrow$ very easy to ionize H

- when $kT < B_{\rm H}$, there are still many photons in Wien tail with $h\nu > B_{\rm H}$
- thus expect $T_{rec,naive}$

in detail: recall that $n_{\gamma} \sim (kT/hc)^3$, so

$$n_{\rm tot} \sim \eta n_{\gamma} \sim \eta (kT/hc)^3$$
 (12)

and so Saha becomes

 ∞

$$\frac{x_e^2}{1-x_e} \sim \frac{1}{\eta} \left(\frac{m_e c^2}{kT}\right)^{3/2} e^{-B_{\rm H}/kT}$$
(13)

note: $1/\eta \gg 1$ and $m_e c^2/kT \gg 1$

so when $x_e = 1/2$ we have (PS 7) $T_{\text{rec}} \simeq T_{\text{rec,naive}}/40 \sim 3000 \text{ K}$ $kT_{\text{rec}} \simeq 0.3 \text{ eV} \ll B_{\text{H}}$ and thus $1 + z_{\text{rec}} = T_{\text{rec}}/T_0 \sim 1000$

Saha Generalized

can generalize Saha to get ionization equilibrium for any species having $a^+ + e \leftrightarrow a^0 + \gamma$

$$\frac{n_{+}n_{e}}{n_{0}} = \frac{g_{+}g_{e}}{g_{0}} \left(2\pi \frac{m_{e}m_{+}kT}{m_{0}h^{2}}\right)^{3/2} e^{-B/kT}$$
(14)

with B the binding energy

Radiative Transitions

Radiative Transitions

so far: thermal populations of bound states now: *transitions* between states leading to emission/absorption

we want a qualitative and quantitative understanding

qualitatively:

- what is the basic physics?
- selection rules: which transition are allowed?

quantitatively:

Q: what do we want to know?

11

quantitatively:

we want to describe the *strength* of transitions in particular, the usual radiation transfer quantities

- emission coefficient $j_{
 u}$
- absorption coefficient α_{ν}

these are closely related to Einstein coefficients

- A_{if} spontaneous emission rate per atom for $i \rightarrow f$
- B_{if} stimulated emission coefficient
- B_{fi} true absorption coefficient

recall: we found that, for $h\nu_{if} = E_i - E_f$

$$j_{\nu} = \frac{h\nu_{if} A_{if}}{4\pi} n_i \phi(\nu) \tag{15}$$

$$\alpha_{\nu} = \frac{h\nu_{if}}{4\pi} \left(B_{fi}n_f - B_{if}n_i \right) \phi(\nu) \tag{16}$$

(17)

12

with $\phi(\nu)$ the *line profile* function

Radiative Transitions: Eigenstates are Forever?

Reall the quantum mechanics of bound systems, e.g., H atom controlled by Hamiltonian operator $\hat{H} = \hat{p}^2/2m + V(\hat{r})$ with V the *potential* binding the constituents

wavefunctions are energy eigenstates $H\Psi_n = E_n\Psi_n$ with $\Psi_n(\vec{r},t) = \psi_n(\vec{r})e^{-iE_ht/\hbar}$

Note:

- electron probability in space $dP/d\vec{r} = |\Psi(\vec{r})|^2$ for eigenstate: $dP/d\vec{r} = |\psi_n(\vec{r})|^2$ is *independent of time*
- expectation values within eigenstate also time independent e.g., $\langle \vec{r} \rangle = \int |\psi(\vec{r})|^2 \vec{r} d^3 \vec{r}$
- thus expected dipole moment $\left< \vec{d} \right> = e \left< \vec{r} \right>$ also time independent
- $\overline{\omega}$ Q: implications for eigenstate evolution? for radiation? Q: Whaaa? how can it be that atoms radiate at all??

Spontaneous Emission: Dipole Approximation

for *unperturbed bound* system: once in *any* eigenstate

- stay there forever! including in excited states!
- no changing dipole moment (or change in any higher moments) \rightarrow no radiation!

but if an external perturbation is present wavefunction mixes states

Q: what could be the source of perturbation?

A Quantum Vacuum is Not Boring!

External perturbation needed to drive transitions in bound states but luckily: one source is guaranteed!

the electrogmagnetic field is quantized!

- closely analogous to simple harmonic oscillator where $H = p^2/2m + m\omega^2 x^2/2$ leads to quantized states $E_n = (n + 1/2)\hbar\omega$ ground state n = 0: $\psi_0 \neq 0$! zero point energy $E_0 = \hbar\omega/2$!
- EM field Hamiltonian $H = (E^2 + B^2)/8\pi$ for experts, true analogy is potentials: $H \sim \dot{A}^2 + (\nabla A)^2 \sim \dot{A}_{\omega}^2 + \omega^2 A_{\omega}^2$ leads to quantized states, each with $E = \hbar\omega$ but also zero point fluctuations for n = 0 quanta!

Lessons:

15

- EM vacuum: ground state (n = 0). Not empty!
- vacuum fluctuations inevitable, always present
- perturbs bound systems, drives transitions

The Road to Saha: Method II–Chemical Equilibrium

recall that the number of states for a particle is related to its *distribution function* f via

$$dN = \frac{g}{h^3} f \ d^3x \ d^3p \tag{18}$$

where f counts states in phase space

i.e., *translational* degrees of freedom and where g counts *internal* degrees of freedom

e.g., for a free electron, $g_e = 2s_e + 1 = 2$

a particle species in thermal (in fact, kinetic) equilibrium at T has

$$f = \frac{1}{e^{(E-\mu)/kT} \pm 1}$$
 (19)

where $\pm \leftrightarrow$ fermion/boson $\stackrel{\checkmark}{\neg}$ and $E(p) = \sqrt{(cp)^2 + (mc^2)^2} \stackrel{\text{nonrel}}{=} mc^2 + p^2/2m$ and where μ is the chemical potential (more on this soon) distribution function, $\pm \leftrightarrow$ fermion/boson

$$f = \frac{1}{e^{(E-\mu)/kT} \pm 1}$$
 (20)

for nonrelativistic, nondegenerate gasses of interest, $f \ll 1$ $\rightarrow e^{(E-\mu)/kT} \gg 1$, and thus we get Maxwell-Boltzmann, same for fermions and bosons

$$f \approx f_{\rm MB} = e^{(mc^2 - \mu)/kT} e^{-p^2/2mkT}$$
 (21)

and thus *number density* is

$$n = \frac{g}{h^3} \int d^3p \ f = g \left(\frac{2\pi mkT}{h^2}\right)^{3/2} e^{(mc^2 - \mu)/kT}$$
(22)

thus $n(T, \mu)$: density depends not only on T but also on chemical potential(?)

18

nonrelativistic particle density

19

$$n(T,\mu) = \frac{g}{h^3} \int d^3p \ f = g \left(\frac{2\pi m kT}{h^2}\right)^{3/2} e^{(mc^2 - \mu)/kT}$$
(23)

if chemists invented μ , isn't it boring? Fair question, but no!

chemical potential μ : bad name, important quantity

consider a particle species with $\mu = 0$ Q: effect on n if T changes? Q: what would it be like if air in this room obeyed this rule?

Q: so what does it mean physically if $\mu = 0$? *Q:* so what does it mean physically if $\mu \neq 0$?

Chemical Potential

if $\mu = 0$:

density obeys $n(T) = g n_q(T) e^{-mc^2/kT}$ with the *quantum concentration* $n_q = (2\pi m kT/h^3)^{3/2}$ \rightarrow density is a fixed, universal function of T \rightarrow all $\mu = 0$ gasses have *same density at same T*!?

furthermore:

- since nonrel, $kT \ll mc^2 \rightarrow n$ small!
- \bullet but n is an increasing function of T
 - \rightarrow so in fixed volume, raising T adds new particles!

lesson: particles with $\mu = 0$ are *not conserved!*

⁸ in fact, we already saw a (relativistic) example: photons! recall Planck dist func $f = 1/(e^{E/kT} - 1)$: boson with $\mu = 0$ we are usually interested in species that *are* conserved e.g., protons, neutrons conserved due to baryon number electrons conserved due to charge and lepton number

in that case: non-relativistic equilibrium density determined not by temperature, but by conservation law

 $\mu_a + \mu_b = \mu_c + \mu_d$

$$n_{\rm cons} = g \ n_{\rm q} \ e^{-(mc^2 - \mu)/kT}$$
 (24)

```
this sets value of \mu
```

21

Why is all of this useful?! because in a reaction $a + b \leftrightarrow c + d$ the chemical potentials of each species are related by

Q: so what about the case $p + e \leftrightarrow H + \gamma$?

for $p + e \leftrightarrow H + \gamma$, we have

$$\mu_p + \mu_e = \mu_{\mathsf{H}} \tag{26}$$

because $\mu_{\gamma} = 0$

using this and $n_i = g_i n_{\rm Q} e^{-(m_i c^2 - \mu_i)/kT}$, we have the Saha equation

$$\frac{n_e n_p}{n_{\rm H}} = \frac{g_e g_p}{g_{\rm H}} \left(2\pi \frac{m_e m_p kT}{m_{\rm H}} \frac{h^2}{h^2} \right)^{3/2} e^{-B_{\rm H}/kT}$$
(27)

where hydrogen binding energy $B_{\rm H} = (m_e + m_p - m_{\rm H})c^2 = 13.6 \text{ eV}$

Q: behavior at high T? low T? does this make sense? \aleph