Astro 501: Radiative Processes
Lecture 23
October 22, 2018

Announcements:
e Problem Set 7 due Friday
e seminars next semester

Last time:

the quantum mechanics of bound states

energy eigenstates Q: time dependence? dipole moment?
Q. what is required for spontaneous emission?



Feeling Perturbed

consider two eigenstates:
upper level E, and lower level E,

when perturbed V — V 4+ 0V, new wavefunction

W = qpe Bt/ Ty 4 aye ™ But/ Ty, (1)

with nonzero amplitudes a;

this changes expectations values

— 2 2 1wy, b
(d) = |agl <J>€—|—|au| <J>u+2Re (ag * aye™rut) (2)
creates time changing dipole and thus radiation
at frequency wy,, = (Ey — Ey) /A



Spontaneous Dipole Emission: Wild West Derivation

Full derivation: requires quantum electrodynamics
i.e., quantum treatment of electromagnetic field
Sketched in R&L and in Extras below

Here: cowgirl/cowboy “horseback’ derivation

consider a transition from an upper level E,
to a lower level E,
expected time-changing dipole component is

d=(d) ~e e ™l (u|f) (3)
and so dipole acceleration is
d~ e wgzu e Wweul (u| 7€) (4)

Q. and so7’



in dipole approximation, Larmor power per atom is

712 4
_ 2‘d| N Yoy d |2
3 1%ul

P, =
ut 33 C

e transition driven by dipole operator

4, =e /w*g by dV

between initial and final states
e zero when no dipole moment—forbidden transitions!
but higher multipole transitions may still go

now we are ready for Einstein A, ! Q: how?

(5)
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Spontaneous Dipole Emission

the power emitted in ©w — ¢ transition:

w
Pu ~ ﬂ|du€|2 (6)

energy released per transition E, ) = hwy,
SO estimate transition rate per atom as

dNuE N Puﬁ N w?u

dt Eu€ he3

el (7)

exact Einstein coefficient for spontaneous emission
4 3 2

3c3h
Q. what about absorption and stimulated emission?

Auﬁ —

(8)



Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:
e spontaneous emission
. 644 I/Sg |2 . 213

A, = = B 9
ul 335 2h ‘u ( )

e true absorption

872 >
By, = ——=|d —
lu 36712 | £u|

for non-degenerate atomic levels with g, = g, = 1 we have
e stimulated emission

4 2
‘d€u| (10}

Bu€ — Bﬁu (11}

this gives (at least in principle) a direct means to connect
the radiative coefficients 5, and ay
to the atomic properties encoded in the dipole moment d,,



recall that the absorption coefficient is

h
oy = 4—V ng By, ¢(v) (12)
T

and so writing this in terms of the absorption cross section oy,

ay = ny ¢ op(v) (13)

so that the cross section and Einstein coefficient are related by

hv
oo (V) = 4 By, ¢(v) (14)
T C
integrating and using [ ¢(v) dv = 1, we have
41 ¢
By, == [ o0, (v) dv (15)
Vev

and thus our expressions for By, also give oy,



Oscillator Strength

If the electron moves as a damped classical oscillator
with natural (resonant) frequency wg
then (PS7) absorption rate is B§2assCi@l j(y,, ) with

2 2
pclassical _ 4m<e
fu hvy,, mec

it is thus convenient write

Bgu = féu Bé:qiassical
2
e

O-Eu(’/) — o ffu Qb(V)
e

where the dimensionless oscillator strength is

Qme
3h2gye?

mMe

fou = @/U@(V) dv =

Q: what about f, 7

(Eu— Ep) Y. |dgy|?

(16)

(17)

(18)

(19)



Einstein gyBy,, = guB,r, and since we have absorption

gu Jue = — 9oty (20}
SO emission oscillator strengths are negative

if we sum over all transitions from z — 7,
can show that one-electron atoms have

Y fij=1 (21)
g final
where strong transitions have f;; ~ 1
and N-electron atoms have

> fij=N (22)
7 final
the Thomas-Riche-Kuhn sum rule

Q. What if two states have no dipole moment: dif =07
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Beyond the Dipole

Our focus has been on electric dipole radiation
where Larmor gives power Ppq ~ d?

but radiation also results from other time-changing charge mul-
tipoles

e.d., magnetic dipole Py ~m
electric quadrupole Pgs ~ Q2
— higher multipoles can radiate when dipole forbidden (d = 0)!

2

But there is a cost! for system of size a, freq w:

e clectic dipole d ~ ea, P ~ w?e?a?

e magnetic dipole m ~ Ia?/c ~ ewa?/c ~ d v/c

e clectric quadrupole Q ~ ea?, P ~ wPQ?/c?

magnetic dipole and electric quadropole power down by ~ (fu/c)2
dipole radiation dominates unless forbidden



Electric Dipole Selection Rules
When is a transition between states ¢ and f possible?

in general: the transition probability is always nonzero
but can be very small if the transition is suppressed,
usually due to a symmetry
e.g., a forbidden dipole can have a nonzero quadrupole rate

focus on selection rules for electic dipole transitions
where recall that the dipole matrix element is

dp = e/¢;z S 74y d3a (23)
electrons

Laporte’s rule:

no transitions between two states of the same parity
~ Q@Q: what is a parity transformation?
Q: why is dfi = 0 if2* and 5 have same parity?



Cl

a parity transformation is the mapping v — —7r

note: electron wavefunctions are angular momentum eigenstates
and angular momentum eigenstates are parity eigenstates
thus: wavefunctions have definite parity

Vi (—7) = T (7)), with m, = £1
thus if m; = Tf then

— —’ = —
dp — dy; = —e/qp;zz Ry d3x = —dy; (24)
J
and thus J}i = 0: no transitions when parity unchanged
the parity of an electron configuration (set of states)
IS set by the electron angular momenta:

parity is (—1)2@, where each electron has ¥¢;

thus we conclude: no transitions between the same configuration
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Note that the atomic wavefunction is really a function
Y(ry, o, ..., 7N) over all N electron coordinates
and at our level of approximation can be written in terms of

single-electron wavefunctions uq(71) up(7) ... up(7n)
where [ufuq d3z =1

thus the dipole operator fF’J picks out the wavefunctions
for a single electron, involving [ u*7; ua d>r;

Q. implications?



the dipole operator only involves [ u*; uq d3r;
for a single electron

thus we conclude

e all other electron wavefunctions remain the same

e one electron jumps per transition

e the transition dipole moment is that of the jumping electron
e in the jump the parity change is (—1)4¢

vector nature of dipole operator imposes conditions on
single electron states in transitions:

YAV
Am

41 (25)
0,+1 (26)

=
* www: helium allowed transitions
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rules for total angular momentum quantum numbers

AS 0
AL 0,41
AJ = 0,1 except J=0to J=0

note that we can have AL =0
but always must have A/ = +1

examples:
[ 38 251/2 — 48 251/2

AV = 0: forbidden!

® 2p 2Py 5 — 3d 2Ds )5

Al =1, OK!
AL =1, OKl
AS =0, OKI

AJ = 2, forbidden!

(27)
(28)
(29)
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Director’'s Cut Extras




T he Semiclassical Approach

Deriving the general Einstein A and B coefficient
for transitions between two atomic states

from first principles

IS a big job

we will take a ‘“first-ish” principles approach
sketch what goes into the final result

we will work in the semiclassical limit
e treat the atomic states quantum mechanically
e but treat the radiation classically
— i.e., in the limit of large photon occupation f
R good for getting Einstein B, bad for A Q: why?
Q. but what’s the workaround if we know B7



classical radiation < large photon occupation f

absorption and stimulated emission: rate proportional to J, =
[ I, dS2

and recall I, = 2v2/c? f
— SO rate « [ f dS€2 works even down to small f

spontaneous emission: involves single photons
correct analysis demands quantum treatment of radiation field

but luckily Einstein says: A;; = (QhV?f/CQ)Bfi
so if we find B, then use this to get A

- thus: we will calculate absorption
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So we will:
e treat atoms quantum mechanically, and

e treat radiation as a perturbation, in the form of
an external classical EM field

Q. how do we describe formally the unperturbed system?

Q. how do we introduce the perturbation?
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The Electromagnetic Hamiltonian

recall quantum mechanics: stationary atomic states |n)
are governed by the time-independent Schrodinger equation

Hg |n) = En |n) (30)
in terms of wavefunctions ¥, (z) = (z|n) ,
Hg Yn = En Yn (31)

with Hgy the Hamiltonian operator for the atom
and includes the e-nucleus EM interactions
and Ej, is the energy of state n

add an external classical field with 4-potential (¢, A)
the relativistic Hamiltonian for an electron is

- 2
H = \/(cﬁ—l— eA) + (mec?)? — e¢ (32)
for experts: gives right equation of motion in Hamilton’s eqs
Q. limit of no field? non-relativistic limit?




T he Relativistic Hamiltonian

full relativistic Hamiltonian for an electron

—\ 2
H = \/(cﬁ—l— eA) + (mec?)? — ed (33)
non-relativistic limit: cp < mec?
-\ 2
1 L, . €A
o= o (7] - (34)
2Me C
2 2 22
e - _ eA
= At 5o (35)
2Me  MeC 2MecC

plus a constant term mec? which we ignore Q: why?

note: we have used the “Coulomb gauge” for the perturbation
= V. A=0=2¢



[

we can write the non-relativistic Hamiltonian as

H = Ho+ Hy + Hop (36)

where the unperturbed atomic Hamiltonian is Hy,
the perturbation first order in A is

Hy = A5 (37)
and the perturbation second order in A is

2A2
Hy = — (38)

2mec?

there is a beautiful physical interpretation of the terms:
e /11 describes one-photon emission processes
e /1> describes two-photon emission processes

Q). relative importance of the two terms?
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order-of-magnitude estimate of the ratio of terms, in H atom:

H1 epA/mec ev/c

==~ ~ 39
' Hy €2A2/mec? a2apA (39)
external electric field E ~ 1/c partialiA ~v/c A
and in H: v/c ~a, and hv ~ e2/ag SO hv/c ~ a/ag
hv
2
~ 40
Ui GSEQ (40)
but E2/hv ~ npp, the photon density in the external field
1 102° photons/cm?3
n* ~ 3~ ( (41)
"ph@g "ph

at the Sun’s surface npp ~ 1012/cm3

lesson: n > 1 for (almost) all astro applications
— Iignore the two-photon term Ho»
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The Transition Probability

we want the probability for transition 1 — f
where the unperturbed wavefunctions satisfy Hq ¥ = E}. ;. this
probability is time-dependent

the perturbing field generates nonzero amplitude for states n #= 1
so write time-dependent wavefunction as

b(t) =S ap(t) oy, e /T (42)
k

Q: ai(t) for system without perturbation? behavior with pertur-
bationr



Gc

for at time-dependent potential, standard quantum mechanics
gives
the probability sz- to go from state 1 — f

with ¢ the time the perturbation acts
and the transition probability per unit time

Wy = 472 |h;(wfi)|2
h< t
where Hpi(w) = (2r) L [§ Hpi(t) et
with the matrix element Hp; = [} Hy 1 d3z
and where hwy, = Ef — E;

(44)

if we have multiple atomic electrons, them perturbation is sum

.
RISV, (45)
j

(&

Hi=—>YA7p=
eCj

m MeC



let the perturbingjield have:
o A(7,t) = A(t) %7, with
e A(t) = 0 outside of (0,t)

then the Fourier transform of the matrix element is

- zeﬁ
Hyp= Ap(wy) - (f “““Zv 4) (46)

where (f] ei’g"FZj Vi) = >5[ Vi b d3z is time-independent

write A = A e with unit polarization vector e:

472e

47
cht ( )

‘A(wﬁ)

(fle*Te - S0V,
J

S note that wy; o< |[A(wy;)|?; related to intensity



LC

recall: integrated intensity is

- C C
1=(57)= | B2 dt = ;/|E(w)|2 dt

to monochromatic intensity

_ ¢ [BW)?
t

and since E = —1/c ;A = —iw/cA

Jw

2
w
Jo = —|A(w)|?
ct

and thus we see that wy; o< |A(w)|?
implies W X Jo, as expected for absorption!

also: what about W f, for f — 17

(48)

(49)

(50)



finally, for the transition probability per unit time
for i — f we have

2
477262 J(wfi) ik-7 Ta
— V. 51
W i Mec2 w2, (fle Z | (51)
f1
about the probability for Ji—> 17
the same except now (i[e?* e - 37, Vi)
but integrating by parts, can show
Wif = Wf; (52)

principle of detailed balance

l

3

now: evaluate operator e*"e -y ;V,

N
0o



the heart of the transitiorl probability is
the matrix element fw?eik'Fe Y Vi

the wavenumber k = w/c = AFE/hc
and the atomic wavefunctions are significant on scales ~ ag
so: k-7~ kag ~ agAE/hc ~ Zv/c < 1

thus we write

eFT =14k -7— =(k-P)%+ - (53)

1
2

and we approximate e*7 ~ 1

Q. when would we be interested in the higher order terms?

N
©
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we see that ¢F™ =1 4+ ik -7+ - ..
iS an expansion in v/c
and we recall v/c < 1 for atoms with moderate Z <« 137

lesson: expansion is dominated by first nonzero term

e (kr)0 term: electric dipole approximation (more soon on this)
dominates unless identically zero, then

o (kr)l term: electric quadrupole approximation
and comparable magnetic dipole term (B ~v/c E)

° (kr)Q term: electric octupole, magnetic quadrupole

Note that to describe these terms,
have to modify Schrodinger equation to appropriate order in v/c
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T he Dipole Approximation

outting ¢ ~ 1. the matrix element is

(2

i.e., related to the expected momentum of electron j

to bring this into a more familiar form, we note
the basic quantum operator relationship

D, —ﬁjrj =2ihp (55)
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and so given the atomic Hamiltonian

~

Hgp =

Qme

we have

%Jﬁ() - f‘_\’o’l?] =1
me

a special case of the general result —iho;A =

and soO we have

1
ih <e pj>f

Zp] + V(’I“l,TQ,...

=)
Z
—

[H, A

m R q
—§/¢}ie - (7jHo — HoTj); d>x

me(E; — E¢) ..
_ e e f/wfe-mpid?’x

(56)

(57)

(58)

(59)
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thus the transition rate is
47‘(‘

wfi — e J>f | j(wfz) (60)
where the electric dipole operator IS
d = lej (61)
J

note that generally we have atoms in random orientations
so taking the angle average, we have

e 1
(le-dpil?) = Sldgil? (62)
where

dpi? = dfy - dpy = [(d) £4]% 4 [(dy) pil* + [(dz) 4] (63)



Electric Dipole Transition Rate

the electric dipole transition rate is thus

47'('2 2
<wfz'> = 3,72 [dil” T(wyi) (64)

thus the Einstein absorption coefficient for £ — u (“lower to
upper’”) is

(weu) = By J (Vi) (65)
where J(vy,) = J(vy,) /47 since intensity is in one direction
and J(vp,) = J(wypy,) dw/dv = 27T (wy,), SO

(i) = - Beu T () (66)

@ and we can now find all three Einstein coefficients Q. how?
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Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:
e true absorption

872 3274
3ch? 3ch
for non-degenerate atomic levels with gy = g, = 1 we have
e Sstimulated emission

By, = |d€u|2 — |d€u|2 (67)

Buﬁ — Bﬁu (68)
e Spontaneous emission
213 6474 13, |dy|?
Ay = 5By, = e 69
4 62h fu 3C3h ( )

this gives (at least in principle) a direct means to connect
the radiative coefficients j, and ay
to the atomic properties encoded in the dipole moment d,



