
Astro 501: Radiative Processes

Lecture 23

October 22, 2018

Announcements:

• Problem Set 7 due Friday

• seminars next semester

Last time:

the quantum mechanics of bound states

energy eigenstates Q: time dependence? dipole moment?

Q: what is required for spontaneous emission?
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Feeling Perturbed

consider two eigenstates:

upper level Eu and lower level Eℓ

when perturbed V → V + δV , new wavefunction

Ψ = aℓe
−iEℓt/h̄ψℓ + aue

−iEut/h̄ψu (1)

with nonzero amplitudes ai

this changes expectations values
〈

~d
〉

= |aℓ|
2
〈

~d
〉

ℓ
+ |au|

2
〈

~d
〉

u
+ 2Re

(

aℓ ∗ aue
iωℓut

)

(2)

creates time changing dipole and thus radiation

at frequency ωℓu = (Eu − Eℓ)/h̄!!
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Spontaneous Dipole Emission: Wild West Derivation

Full derivation: requires quantum electrodynamics

i.e., quantum treatment of electromagnetic field

Sketched in R&L and in Extras below

Here: cowgirl/cowboy “horseback” derivation

consider a transition from an upper level Eu

to a lower level Eℓ
expected time-changing dipole component is

~d ≡
〈

~d
〉

∼ e e−iωℓut 〈u|~r|ℓ〉 (3)

and so dipole acceleration is

~̈d ∼ e ω2
ℓu e

−iωℓut 〈u|~r|ℓ〉 (4)

Q: and so?
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in dipole approximation, Larmor power per atom is

Puℓ =
2

3

|d̈|2

c3
∼
ω4
ℓu

c3
|duℓ|

2 (5)

• transition driven by dipole operator

~duℓ = e
∫

ψ ∗ℓ ~rψu dV

between initial and final states

• zero when no dipole moment–forbidden transitions!

but higher multipole transitions may still go

now we are ready for Einstein Auℓ! Q: how?
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Spontaneous Dipole Emission

the power emitted in u → ℓ transition:

Puℓ ∼
ω4
ℓu

c3
|duℓ|

2 (6)

energy released per transition Euℓ = h̄ωℓu
so estimate transition rate per atom as

dNuℓ

dt
∼
Puℓ
Euℓ

∼
ω3
ℓu

h̄c3
|duℓ|

2 (7)

exact Einstein coefficient for spontaneous emission

Auℓ =
64π4 ν3uℓ |duℓ|

2

3c3h
(8)

Q: what about absorption and stimulated emission?
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Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:

• spontaneous emission

Auℓ =
64π4 ν3uℓ |duℓ|

2

3c3h
=

2ν3

c2h
Bℓu (9)

• true absorption

Bℓu =
8π2

3ch̄2
|dℓu|

2 =
32π4

3ch
|dℓu|

2 (10)

for non-degenerate atomic levels with gℓ = gu = 1 we have

• stimulated emission

Buℓ = Bℓu (11)

this gives (at least in principle) a direct means to connect

the radiative coefficients jν and αν

to the atomic properties encoded in the dipole moment duℓ
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recall that the absorption coefficient is

αν =
hν

4π
nℓ Bℓu φ(ν) (12)

and so writing this in terms of the absorption cross section σℓu

αν = nℓ c σℓu(ν) (13)

so that the cross section and Einstein coefficient are related by

σℓu(ν) =
hν

4π c
Bℓu φ(ν) (14)

integrating and using
∫

φ(ν) dν = 1, we have

Bℓu =
4π c

hνℓν

∫

σℓu(ν) dν (15)

and thus our expressions for Bℓu also give σℓu7



Oscillator Strength

If the electron moves as a damped classical oscillator

with natural (resonant) frequency ω0

then (PS7) absorption rate is Bclasscial
ℓu J(νℓu) with

Bclassical
ℓu =

4π2e2

hνℓu mec
(16)

it is thus convenient write

Bℓu ≡ fℓu B
classical
ℓu (17)

σℓu(ν) =
πe2

mec
fℓu φ(ν) (18)

where the dimensionless oscillator strength is

fℓu =
me

πe2

∫

σℓu(ν) dν =
2me

3h̄2gℓe
2
(Eu − Eℓ)

∑

|dℓu|
2 (19)

Q: what about fuℓ?
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Einstein gℓBℓu = guBuℓ, and since we have absorption

gu fuℓ = − gℓfℓu (20)

so emission oscillator strengths are negative

if we sum over all transitions from i→ j,
can show that one-electron atoms have

∑

j final

fij = 1 (21)

where strong transitions have fij ∼ 1

and N-electron atoms have
∑

j final

fij = N (22)

the Thomas-Riche-Kuhn sum rule

Q: What if two states have no dipole moment: dif = 0?
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Beyond the Dipole

Our focus has been on electric dipole radiation

where Larmor gives power PE1 ∼ d̈2

but radiation also results from other time-changing charge mul-

tipoles

e.g., magnetic dipole PM1 ∼ m̈2

electric quadrupole PE2 ∼ Q̈2

⇒ higher multipoles can radiate when dipole forbidden (d = 0)!

But there is a cost! for system of size a, freq ω:

• electic dipole d ∼ ea, P ∼ ω2e2a2

• magnetic dipole m ∼ Ia2/c ∼ eωa2/c ∼ d v/c

• electric quadrupole Q ∼ ea2, P ∼ ω6Q2/c2

magnetic dipole and electric quadropole power down by ∼ (v/c)2

dipole radiation dominates unless forbidden

1
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Electric Dipole Selection Rules

When is a transition between states i and f possible?

in general: the transition probability is always nonzero

but can be very small if the transition is suppressed,

usually due to a symmetry

e.g., a forbidden dipole can have a nonzero quadrupole rate

focus on selection rules for electic dipole transitions

where recall that the dipole matrix element is

~dfi = e
∫

ψ∗
f

∑

electrons j

~rj ψi d
3x (23)

Laporte’s rule:

no transitions between two states of the same parity

Q: what is a parity transformation?

Q: why is ~dfi = 0 if i and j have same parity?

1
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a parity transformation is the mapping ~r → −~r

note: electron wavefunctions are angular momentum eigenstates

and angular momentum eigenstates are parity eigenstates

thus: wavefunctions have definite parity

ψk(−~r) = πkψk(~r), with πk = ±1

thus if πi = πf , then

~dfi → ~d′fi = −e
∫

ψ∗
f

∑

j

~rj ψi d
3x = −~dfi (24)

and thus ~dfi = 0: no transitions when parity unchanged

the parity of an electron configuration (set of states)

is set by the electron angular momenta:

parity is (−1)
∑

ℓi, where each electron has ℓi

thus we conclude: no transitions between the same configuration

1
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Note that the atomic wavefunction is really a function

ψ(~r1, ~r2, . . . , ~rN) over all N electron coordinates

and at our level of approximation can be written in terms of

single-electron wavefunctions ua(~r1) ub(~r2) . . . uk(~rN)

where
∫

u∗aua d
3x = 1

thus the dipole operator ~rj picks out the wavefunctions

for a single electron, involving
∫

u∗a′~rj ua d
3rj

Q: implications?
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the dipole operator only involves
∫

u∗a′~rj ua d
3rj

for a single electron

thus we conclude

• all other electron wavefunctions remain the same

• one electron jumps per transition

• the transition dipole moment is that of the jumping electron

• in the jump the parity change is (−1)∆ℓ

vector nature of dipole operator imposes conditions on

single electron states in transitions:

∆ℓ = ±1 (25)

∆m = 0,±1 (26)

www: helium allowed transitions

1
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rules for total angular momentum quantum numbers

∆S = 0 (27)

∆L = 0,±1 (28)

∆J = 0,±1 except J = 0 to J = 0 (29)

note that we can have ∆L = 0

but always must have ∆ℓ = ±1

examples:

• 3s 2S1/2 → 4s 2S1/2

∆ℓ = 0: forbidden!

• 2p 2P1/2 → 3d 2D5/2

∆ℓ = 1, OK!

∆L = 1, OK!

∆S = 0, OK!

∆J = 2, forbidden!
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Director’s Cut Extras

1
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The Semiclassical Approach

Deriving the general Einstein A and B coefficient

for transitions between two atomic states

from first principles

is a big job

we will take a “first-ish” principles approach

sketch what goes into the final result

we will work in the semiclassical limit

• treat the atomic states quantum mechanically

• but treat the radiation classically

→ i.e., in the limit of large photon occupation f

good for getting Einstein B, bad for A Q: why?

Q: but what’s the workaround if we know B?

1
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classical radiation ↔ large photon occupation f

absorption and stimulated emission: rate proportional to J̄ν =
∫

Iν dΩ

and recall Iν = 2ν2/c2 f

→ so rate ∝
∫

f dΩ works even down to small f

spontaneous emission: involves single photons

correct analysis demands quantum treatment of radiation field

but luckily Einstein says: Aif = (2hν3if/c
2)Bfi

so if we find B, then use this to get A

thus: we will calculate absorption1
8



So we will:

• treat atoms quantum mechanically, and

• treat radiation as a perturbation, in the form of

an external classical EM field

Q: how do we describe formally the unperturbed system?

Q: how do we introduce the perturbation?

1
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The Electromagnetic Hamiltonian

recall quantum mechanics: stationary atomic states |n〉
are governed by the time-independent Schrödinger equation

H0 |n〉 = En |n〉 (30)

in terms of wavefunctions ψn(x) = 〈x|n〉 ,

H0 ψn = En ψn (31)

with H0 the Hamiltonian operator for the atom

and includes the e-nucleus EM interactions

and En is the energy of state n

add an external classical field with 4-potential (φ, ~A)

the relativistic Hamiltonian for an electron is

H =

√

(

c~p+ e ~A
)2

+ (mec
2)2 − eφ (32)

for experts: gives right equation of motion in Hamilton’s eqs

Q: limit of no field? non-relativistic limit?
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The Relativistic Hamiltonian

full relativistic Hamiltonian for an electron

H =

√

(

c~p+ e ~A
)2

+ (mec
2)2 − eφ (33)

non-relativistic limit: cp≪ mec2

H =
1

2me

(

~p+
e ~A

c

)2

− eφ (34)

=
p2

2me
+

e

mec
~A · ~p+

e2A2

2mec2
− eφ (35)

plus a constant term mec2 which we ignore Q: why?

note: we have used the “Coulomb gauge” for the perturbation

∇ · ~A = 0 = φ

2
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we can write the non-relativistic Hamiltonian as

H = H0 +H1 +H2 (36)

where the unperturbed atomic Hamiltonian is H0,

the perturbation first order in A is

H1 =
e

mec
~A · ~p (37)

and the perturbation second order in A is

H2 =
e2A2

2mec2
(38)

there is a beautiful physical interpretation of the terms:

• H1 describes one-photon emission processes

• H2 describes two-photon emission processes

Q: relative importance of the two terms?

2
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order-of-magnitude estimate of the ratio of terms, in H atom:

η =
H1

H2
∼

epA/mec

e2A2/mec2
∼

ev/c

α2a0A
(39)

external electric field E ∼ 1/c partialtA ∼ ν/c A

and in H: v/c ∼ α, and hν ∼ e2/a0 so hν/c ∼ α/a0

η2 ∼
hν

a30E
2

(40)

but E2/hν ∼ nph, the photon density in the external field

η2 ∼
1

npha
3
0

∼

(

1025 photons/cm3

nph

)

(41)

at the Sun’s surface nph ∼ 1012/cm3

lesson: η ≫ 1 for (almost) all astro applications

→ ignore the two-photon term H2
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The Transition Probability

we want the probability for transition i→ f

where the unperturbed wavefunctions satisfy H0 ψk = Ek ψk this

probability is time-dependent

the perturbing field generates nonzero amplitude for states n 6= i

so write time-dependent wavefunction as

ψ(t) =
∑

k

ak(t) ψk e
−iEkt/h̄ (42)

Q: ak(t) for system without perturbation? behavior with pertur-

bation?

2
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for at time-dependent potential, standard quantum mechanics

gives

the probability Pfi to go from state i→ f

Pfi = wfi t (43)

with t the time the perturbation acts

and the transition probability per unit time

wfi =
4π2 |H(ωfi)|

2

h̄2 t
(44)

where Hfi(ω) = (2π)−1 ∫ t
0Hfi(t) e

iωt′

with the matrix element Hfi =
∫

ψ∗
f H1 ψi d

3x

and where h̄ωfi = Ef − Ei

if we have multiple atomic electrons, them perturbation is sum

H1 =
e

mec

∑

j

~A · ~pj =
ieh̄

mec
~A ·
∑

j

∇j (45)

2
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let the perturbing field have:

• ~A(~r, t) = ~A(t) ei
~k·~r, with

• ~A(t′) = 0 outside of (0, t)

then the Fourier transform of the matrix element is

Hfi = ~Afi(ωfi) ·
ieh̄

c
〈f | ei

~k·~r
∑

j

∇j|i〉 (46)

where 〈f | ei
~k·~r∑

j∇j|i〉 =
∑

j
∫

ψ∗
f ∇j ψi d

3x is time-independent

write ~A = A e with unit polarization vector e:

wfi =
4π2e2

mec2 t

∣

∣

∣A(ωfi)
∣

∣

∣

2

∣

∣

∣

∣

∣

∣

〈f |ei
~k·~r

e ·
∑

j

∇j|i〉

∣

∣

∣

∣

∣

∣

2

(47)

note that wfi ∝ |A(ωfi)|
2; related to intensity

2
6



recall: integrated intensity is

I =
〈

~S · ~n
〉

=
c

4π t

∫

E2(t) dt =
c

t

∫

|E(ω)|2 dt (48)

to monochromatic intensity

Jω =
c |E(ω)|2

t
(49)

and since ~E = −1/c ∂t ~A = −iω/c ~A

Jω =
ω2

c t
|A(ω)|2 (50)

and thus we see that wfi ∝ |A(ω)|2

implies wfi ∝ Jω, as expected for absorption!

also: what about wif , for f → i?2
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finally, for the transition probability per unit time

for i→ f we have

wfi =
4π2e2

mec2
J(ωfi)

ω2
fi

∣

∣

∣

∣

∣

∣

〈f |ei
~k·~r

e ·
∑

j

∇j|i〉

∣

∣

∣

∣

∣

∣

2

(51)

about the probability for f → i?

the same except now 〈i|ei
~k·~r

e ·
∑

j∇j|i〉

but integrating by parts, can show

wif = wfi (52)

principle of detailed balance

now: evaluate operator ei
~k·~r

e ·
∑

j∇j2
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the heart of the transition probability is

the matrix element
∫

ψ∗
fe
i~k·~r

e ·
∑

j∇jψi d
3x

the wavenumber k = ω/c = ∆E/h̄c

and the atomic wavefunctions are significant on scales ∼ a0
so: ~k · ~r ∼ ka0 ∼ a0∆E/h̄c ∼ Zv/c≪ 1

thus we write

ei
~k·~r = 1 + i~k · ~r −

1

2
(~k · ~r)2 + · · · (53)

and we approximate ei
~k·~r ≈ 1

Q: when would we be interested in the higher order terms?
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we see that ei
~k·~r = 1 + i~k · ~r+ · · ·

is an expansion in v/c

and we recall v/c≪ 1 for atoms with moderate Z ≪ 137

lesson: expansion is dominated by first nonzero term

• (kr)0 term: electric dipole approximation (more soon on this)

dominates unless identically zero, then

• (kr)1 term: electric quadrupole approximation

and comparable magnetic dipole term (B ∼ v/c E)

• (kr)2 term: electric octupole, magnetic quadrupole

Note that to describe these terms,

have to modify Schrödinger equation to appropriate order in v/c

3
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The Dipole Approximation

putting ei
~k·~r ≈ 1, the matrix element is

∫

ψ∗
fe ·

∑

j

∇jψi d
3x =

1

ih̄

〈

e · ~̂pj
〉

fi
(54)

i.e., related to the expected momentum of electron j

to bring this into a more familiar form, we note

the basic quantum operator relationship

~̂rj ~̂p
2
j − ~̂p

2
j ~̂rj = 2 i h̄ ~̂p (55)

3
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and so given the atomic Hamiltonian

Ĥ0 =
1

2me

∑

j

~̂p
2
j + V (~̂r1, ~̂r2, . . . , ~̂rN) (56)

we have

~̂rjĤ0 − Ĥ0~̂rj = i
h̄~̂pj

me
(57)

a special case of the general result −ih̄∂tÂ = [Ĥ, Â]

and so we have

1

ih̄

〈

e · ~̂pj
〉

fi
=

me

h̄2

∫

ψ∗
fe · (~rjH0 −H0~rj)ψi d

3x (58)

=
me(Ei −Ef)

h̄2

∫

ψ∗
fe · ~rψi d

3x (59)
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thus the transition rate is

wfi =
4π2

h̄2c

∣

∣

∣

∣

〈

e · ~d
〉

fi

∣

∣

∣

∣

2
J (ωfi) (60)

where the electric dipole operator is

~d = e
∑

j

rj (61)

note that generally we have atoms in random orientations

so taking the angle average, we have

〈

|e · ~dfi|
2
〉

=
1

3
|dfi|

2 (62)

where

|dfi|
2 ≡ ~d∗fi ·

~dfi = |(dx)fi|
2 + |(dy)fi|

2 + |(dz)fi|
2 (63)

3
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Electric Dipole Transition Rate

the electric dipole transition rate is thus

〈

wfi
〉

=
4π2

3ch̄2
|dfi|

2 J (ωfi) (64)

thus the Einstein absorption coefficient for ℓ → u (“lower to

upper”) is

〈wℓu〉 = Bℓu J(νℓu) (65)

where J(νℓu) = J (νℓu)/4π since intensity is in one direction

and J (νℓu) = J (ωℓu) dω/dν = 2πJ (ωℓu), so

〈wℓu〉 =
1

2
Bℓu J (ωℓu) (66)

and we can now find all three Einstein coefficients Q: how?3
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Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:

• true absorption

Bℓu =
8π2

3ch̄2
|dℓu|

2 =
32π4

3ch
|dℓu|

2 (67)

for non-degenerate atomic levels with gℓ = gu = 1 we have

• stimulated emission

Buℓ = Bℓu (68)

• spontaneous emission

Auℓ =
2ν3

c2h
Bℓu =

64π4 ν3uℓ |duℓ|
2

3c3h
(69)

this gives (at least in principle) a direct means to connect

the radiative coefficients jν and αν

to the atomic properties encoded in the dipole moment duℓ

3
5


