Astro 501: Radiative Processes Lecture 25 October 26, 2018

Announcements:

- Problem Set 7 due now
- Problem Set 8 due next Friday

Last time: the physics and astrophysics of line shapes

Q: why not a delta function? what about energy conservation?

- Q: sources of broadening?
- Q: lineshapes in astrophysical applications?

Linewidths

naïvely: in transition $u \to \ell$, energy conservation requires $h\nu = E_u - E_\ell \equiv h_{u\ell}$, so $\phi_{\text{naive}}(\nu) = \delta(\nu - \nu_{u\ell})$: zero width!

But real observed linewidths are nonzero, for several reasons

• intrinsic width

quantum effect, due to nonzero transition rate $\Gamma = 1/\tau$ and energy-time uncertainty principle $\Delta E \ \Delta t \gtrsim \hbar/2$

• thermal broadening

thermal motion of absorbers \rightarrow Doppler shifts

collisional broadening

absorber collisions add to transition probability

Collisional Linewidth

if particle densities are high, atomic collisions are rapid and can drive transitions $u \leftrightarrow \ell$

thus there is a nonzero collision rate Γ_{coll} per atom where $\Gamma_{coll} = n \sigma_{coll} v$

heuristically: this decreases excited state lifetimes and thus adds to energy uncertainty

so total transition rate includes both Γ_{int} and Γ_{coll} : \rightarrow collisions add damping, which depends on photospheric density and temperature via Γ_{coll}

thus collisional broadening measures density and temperature thus also know as "pressure broadening"

ω

Q: effect of collisions on lineshape?

recall: atomic transition $u \rightarrow \ell$ has

$$\sigma_{u\ell}(\nu) = \pi e^2 / m_e c \ \mathbf{f}_{u\ell} \ \phi_{u\ell}(\nu) = B_{\text{classical}} \ \mathbf{f}_{u\ell} \ \phi(\nu) \tag{1}$$

without collisions, intrinsic profile shape that is Lorentzian

$$\phi_{u\ell}^{\text{intrinsic}}(\nu) = \frac{4\Gamma_{u\ell}}{16\pi^2(\nu - \nu_{u\ell})^2 + \Gamma_{u\ell}^2}$$

full width at half-maximum: $(\Delta \nu)_{\text{FWHM}} = \Gamma_{u\ell}/2\pi$ set by intrinsic level de-excitation rate $\Gamma_{u\ell}$

With collisions: $\Gamma_{coll} = n \sigma_{coll} v$ still a Lorentzian profile, but with effective transition rate to

$$\frac{\Gamma_{u\ell}}{2} = \frac{\Gamma_{u\ell}^{\text{intrinsic}}}{2} + \Gamma_{\text{coll}}$$
(2)

 ${}^{ au}$ www: solar ${
m H}lpha$ line

Awesome Example: Classifying Stars

Q: how can spectra determine stellar (photosphere) T?

www: spectra of main sequence (dwarf) stars
Q: many lines are strongest in middle of sequency-why?

- www: white dwarf spectrum
- www: O star spectrum
- Q: similar temperatures, why different?

Q: at fixed *T*, how can spectrum distinguish main sequence vs giant stars?

□ Q: which of the above requires distance to star?
 Q: what stellar properties do require distance?

Awesome Example: Classifying Stars

to a good approximation, stellar spectra are:

- blackbody = Planck form, at photospheric T
- with lines (often many!) due to photospheric absorption

Star Type: *OBAFGKMLT* a sequence in *temperature*; Sun is **G2V** "early types" hotter than Sun: *OBAF* "late types" solar and cooler: *GKMLT*

main sequence spectra: lines very temperature sensitive Balmer H lines: weak \rightarrow strong \rightarrow weak for types O \rightarrow A \rightarrow M

- O stars T > 30,000 K: most H is ionized
- $^{\circ}\,$ \bullet A stars $T\sim$ 10,000 K: most H neutral, but n= 2 populated
 - M stars $T \sim 4000$ K: H neutral, tiny n = 2 population

Stellar Luminosity Class: I, II, III, IV, V

determined by shapes of strong lines at fixed spectral typei.e., at (nearly) fixed temperatureV: line wings broader than intrinsic damping widthI: no additional broadening

physically: damping wings sensitive to pressure broadening i.e., by collision rate $\Gamma_{coll} = n\sigma_{coll}v$ at fixed T, this corresponds to different density and pressure but hydrostatic equilibrium: $\nabla P = \rho \vec{g} = G\rho M/R^2$ linewidth set by pressure \rightarrow set by stellar radius R

Class I: supergiant Class II: bright giants Class III: normal ("red" giants) Class IV: subgiants

Class V: main sequence (non-giants = "dwarfs"); Sun is G2V

Absorption Lines: Probing the Depths

so far: focused on absorption line *shape* but important information also in line *depth* below the continuum level

Q: what is needed to measure line depth? Q: in high-resolution spectra, what sets line depth at each ν ? Q: as absorber density increases, effect on line?

absorption cross section (line oscillator strength) generally known www: online databases Q: given this, what quantitative information does line depth

 $_{\infty}$ give?