Astro 501: Radiative Processes Lecture 29 November 12, 2018

Announcements:

- Problem Set 9 due Friday
- Iben Lectures: Prof. Wendy Freedman Colloquium tomorrow 3:45pm, NCSA Public Lecture Wed 7pm, Lincoln Hall

Last time: 21 cm radiation and astrophysics *Q: Why does the line arise? Why is it special? Q: what information does it encode? Q: what information does it omit?* hyperfine transition in neutral hydrogen atoms: H i $u \rightarrow \ell$ is an electron *spin flip* $\uparrow_p \uparrow_e \rightarrow \uparrow_p \downarrow_e$ with

$$A_{u\ell} = 2.8843 \times 10^{-15} \text{ s}^{-1} = (11.0 \text{ Myr})^{-1}$$
 (1)

spontaneous emission not measured in lab but stimulated emission exquisitely well-measured in resonating cavities: hydrogen masers

 $u_{u\ell} = 1420.405751768(1) \text{ MHZ} \quad \lambda_{u\ell} = 21.10611405413 \text{ cm}$ $\Delta E/k_{B} = 0.06816 \text{ K} \ll T_{cmb,0} \rightarrow \text{CMB can populate upper level!}$

$$j_{\nu} = n_u \frac{A_{u\ell}}{4\pi} h \nu_{u\ell} \ \phi_{\nu} \approx \frac{3}{16\pi} A_{u\ell} \ h \nu_{u\ell} \ n(\text{H I}) \ \phi_{\nu}$$
(2)

- intensity I_{ν} measures atomic hydrogen column N(H I)
- flux/intensity map $\int I_{\nu} d\Omega$ measures atomic hydrogen mass
- *line profile* ϕ_{ν} usually measures *velocity distribution*

N

Awesome Example: Cosmic 21 cm Radiation

imagine a Universe which:

- is expanding \rightarrow photons redshift
- is transparent after recombination $z_{\rm rec} \sim 1000$ so CMB is nearly isotropic "backlighting" to all lines of sight
- most baryons are hydrogen of some ilk some fraction of which will be atomic
- initial conditions are homogenous, then structure forms

consider thermal atomic H gas at redshift $z < z_{rec}$

- Q: effect if $T_{gas}(z) = T_{cmb}(z)$?
- Q: what if $T_{gas}(z) \neq T_{cmb}(z)$?

ŝ

- *Q*: what determines which of these is correct?
- Q: resulting 21cm spectrum in each sightline? what does it tell?
- Q: resulting 21cm pattern across the sky? what does it tell us?

Awesome Example: Cosmic 21 cm Radiation

radiation transfer along each sightline, at rest-frame 21cm:

$$I = B_{\nu}(T_{\rm cmb}) \ e^{-\tau_{\nu}} + B_{\nu}(T_{\rm gas}) \ (1 - e^{-\tau_{\nu}}) \tag{3}$$

in terms of antenna temperature

$$T_b = T_{\rm cmb} \ e^{-\tau_{\nu}} + T_{\rm gas} (1 - e^{-\tau_{\nu}}) \tag{4}$$

so: if $T_{gas} = T_{cmb}$ - no signal!

otherwise: emission or absorption depending on $T_{gas} - T_{cmb}$ sign

4

$$T_b = T_{\rm cmb} \ e^{-\tau_{\nu}} + T_{\rm gas} (1 - e^{-\tau_{\nu}}) \tag{5}$$

after gas decoupling, before reionization $z_{reion} \sim 10 \lesssim z \leq z_{dec}$ before the first stars and quasars: **cosmic dark ages** first structure forming, but not yet "lit up"

during dark ages: intergalactic gas has $T_{gas} < T_{cmb}$

$$\delta T_b \equiv T_b - T_{\rm cmb} = (T_{\rm gas} - T_{\rm cmb})_z (1 - e^{-\tau_\nu})_z$$
 (6)

we have $\delta T_b < 0$: gas seen in 21 cm absorption

Q: what cosmic matter will be seen this way? \Box Q: what will its structure be in 3-D? Q: how will this structure be encoded in δT_b ?

The "21 cm Forest"

```
what will absorb at 21 cm?
any neutral hydrogen in the universe!
but after recomb., most H is neutral, and most baryons are H
so absorbers are most of the baryons in the universe
```

thus absorber spatial distribution is *3D distribution of baryons* i.e., intergalactic baryons as well as seeds of galaxies and stars! baryons fall into potentials of dark matter halos, form galaxies so *cosmic 21 cm traces formation of structure and galaxies*!

gas at redshift z absorbs at $\lambda(z) = (1 + z)\lambda_{\ell u}$ and o responsible for decrement $\delta T_b[\lambda(z)]$ \rightarrow thus $\delta T_b(\lambda)$ *encodes redshift history* of absorbers a sort of "21 cm forest"

σ

Q: what about sky pattern of $\delta T_b(\lambda)$ at fixed λ ?

and at fixed λ , sky map of $\delta T_b(\lambda)$ gives baryon distribution in "shell" at $1 + z = \lambda/\lambda_0$ \rightarrow a radial "slice" of the baryonic Universe!

so by scanning through λ , and at each making sky maps of $\delta T_b(\lambda)$ \rightarrow we build in "slices" a 3-D map of cosmic structure evolution! "cosmic tomography"! a cosmological gold mine! encodes huge amounts of information

sounds amazing! and it is! but there is a catch!

Q: why is this measurement very difficult to do? Hint: it hasn't yet been done

21 cm Cosmology: The Challenge

The 21 cm cosmic goldmine lies at redshifts $z \sim 6$ to 150 corresponding to:

• $\lambda_{obs} \sim 1.5 - 30 \text{ m}$ enormous wavelengths! www: LOFAR

```
    ν<sub>obs</sub> ~ 200 - 10 MHz
but ionosphere opaque > ν<sub>plasma</sub> ~ 20 MHz
for highest z (most interesting!) have to go to space! in
fact, have to go to far side of the Moon Q: why?
www: proposed lunar observatories
```

But wait! It's worse!

at these wavelengths, dominant emission is Galactic synchrotron with brightness $T_{\rm B,synch} \sim 200 - 2000 \text{ K} \gg T_{\rm Cmb} \gg T_{\rm B,21 \ cm}$

 $_{\infty}$ www: radio continuum sky

Q: implications? how to get around this?

sky intensity $T_{\rm B,synch} \sim 200 - 2000 \ {\rm K} \gg T_{\rm cmb}$

 \rightarrow Galactic synchrotron foreground dominates cosmic 21 cm curse you, cosmic rays!

But there remains hope! recall: cosmic-ray electron energy spectrum is a power law so their synchrotron spectrum is a power law i.e., $I_{\nu,synch}$ is smooth function of ν

compare 21 cm at high-z: a "forest" of absorption lines not smooth! full of spectral lines & features → can hope to measure with very good spectral coverage and foreground subtraction

also: can use spatial (i.e., angular) distribution
 e.g., consider effect of first stars (likely massive) Q: namely?

first stars: likely massive \rightarrow hot \rightarrow large UV sources ionizing photons carve out "bubble" neutral H \rightarrow corresponding to a *void* in 21 cm \rightarrow sharp bubble edges may be detectable

 \rightarrow 21 cm can probe epoch of reionization

hot, ongoing research area!

stay tuned!

Nebular Diagnostics

Collisional Excitation

so far we have considered atomic line transitions due to emission or absorption of radiation but atom *collisions* can also drive transitions

 \star collisions can place atoms in excited states de-excite radiatively (line emission) \rightarrow cooling source

★ collisions populate atomic levels observing line emission can diagnose density, temperature, radiation field

key physical input: *collision rates* consider inelastic collisions $a + c \rightarrow a' + c'$ of species *a* with "collision partner" *c*

 $\frac{12}{2}$

Q: what is collision rate per volume? per a atom?

for collisions a + c, collision rate per volume is

$$\frac{d\mathcal{N}_{\text{collisions}}}{dV \ dt} \equiv \dot{n}_{ac \to a'c'} = \langle \sigma_{ac} v \rangle \ n_a \ n_c \tag{7}$$

where collision rate coefficient $\langle \sigma_{ac} v \rangle$ averages over collision *cross section* σ_{ac} and relative velocity v between a and c

Q: order-of-magnitude estimate for σ_{ac} ? *Q:* what sets typical v?

collision rate per a is

$$\Box \qquad \qquad \Gamma_{ac \to a'c'} = \frac{n_{ac \to a'c'}}{n_a} = \langle \sigma_{ac} v \rangle \ n_c \qquad (8)$$

Two-Level Atom: No Radiation

instructive simple case: a *two-level atom* denote *ground state* 0, *excited state* 1 with atomic number densities n_0 and n_1

consider effect of collisions with partner c when radiation effects are unimportant:

 $\dot{n}_1 = -\Gamma_{10}n_1 + \Gamma_{01}n_0 = -\langle \sigma_{10}v \rangle n_c n_1 + \langle \sigma_{01}v \rangle n_c n_0 \qquad (9)$

Q: what is n_1/n_0 ratio in equilibrium ($\dot{n}_1 = 0$)? *Q*: what does this imply?

14

without radiation, in *equilibrium*:

$$\dot{n}_1 = -\langle \sigma_{10} v \rangle n_c n_1 + \langle \sigma_{01} v \rangle n_c n_0 = 0$$
(10)
which gives $(n_1/n_0)_{eq} = \langle \sigma_{01} v \rangle / \langle \sigma_{10} v \rangle$

but in thermal equilibrium $(n_1/n_0)_{eq} = (g_1/g_0) e^{-E_{10}/kT}$

so we have the detailed balance result

$$\langle \sigma_{10}v \rangle = \frac{g_1}{g_0} e^{-E_{10}/kT} \langle \sigma_{01}v \rangle \tag{11}$$

i.e., excitation is suppressed by Boltzmann factor $e^{-E_{\rm 10}/kT}$

Two-Level Atom with Radiation

if atoms in excited states exist, they can spontaneously emit \rightarrow radiation must be present

volume rate of: spontaneous emission is $A_{10}n_1$

volume rate of: stimulated emission

$$B_{10}J_{\nu}n_{1} = A_{10}\frac{c^{2}J_{\nu}}{2h\nu^{3}}n_{1} \equiv A_{10} f_{\nu} n_{1}$$
(12)

where for isotropic radiation $J_{\nu} = 2 \nu^3/c^2 f_{\nu}$, with f_{ν} the *photon distribution function* or occupation number

volume rate of: true absorption

16

$$B_{01}J_{\nu}n_{0} = \equiv \frac{g_{1}}{g_{0}}A_{10} f_{\nu} n_{1}$$
(13)

putting it all together, the two-level atom in the presence of collisions and radiation has

$$\dot{n}_{1} = \left[\langle \sigma_{01} v \rangle n_{c} + f_{\nu} \frac{g_{1}}{g_{0}} A_{10} \right] n_{0} - \left[\langle \sigma_{10} v \rangle n_{c} + (1 + f_{\nu}) A_{10} \right] n_{1}$$
(14)

this will seek an equilibrium or steady state $\dot{n}_1 = 0$ giving the ratio

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} = \frac{\langle \sigma_{01}v \rangle n_c + (g_1/g_0)f_{\nu}A_{10}}{\langle \sigma_{10}v \rangle n_c + (1+f_{\nu})A_{10}}$$
(15)

consider the limits of low- and high-density collision partners

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} \to \begin{cases} (g_1/g_0) f_{\nu}/(1+f_{\nu}) , & n_c \to 0\\ \langle \sigma_{01}v \rangle / \langle \sigma_{10}v \rangle & n_c \to \infty \end{cases}$$
(16)

Q: implications of limits if $T_{rad} \neq T_{gas}$?

17

in steady state:

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} = \frac{\langle \sigma_{01}v \rangle n_c + f_{\nu}(g_1/g_0)A_{10}}{\langle \sigma_{10}v \rangle n_c + (1+f_{\nu})A_{10}}$$
(17)

at *low density* of collision partners: $n_c \rightarrow 0$ and thus

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} \to \frac{g_1}{g_0} \frac{f_\nu}{1+f_\nu} \stackrel{\text{therm}}{=} \frac{g_1}{g_0} e^{-E_{10}/kT_{\text{rad}}}$$
(18)

 \rightarrow level population set by radiation temperature T_{rad}

at *high density* of collision partners: $n_c \rightarrow \infty$, and

$$\left(\frac{n_1}{n_0}\right)_{\rm eq} \to \frac{\langle \sigma_{01}v\rangle}{\langle \sigma_{10}v\rangle} = \frac{g_1}{g_0} e^{-E_{10}/kT_{\rm gas}} \tag{19}$$

 \rightarrow level population set by gas temperature T_{gas}

18

Q: characteristic density scale?

Critical Density

for each collision partner c, excited state de-excitation by emission and by collisions are equal when

$$\langle \sigma_{10} v \rangle n_c = (1 + f_\nu) A_{10}$$
 (20)

this defines a critical density

$$n_{c,\text{crit}} = \frac{(1+f_{\nu})A_{10}}{\langle \sigma_{10}v \rangle} \tag{21}$$

- if $f_{\nu} \ll 1$: stimulated emission not important (PS11) $n_{c,\text{crit}} \rightarrow A_{10}/\langle \sigma_{10}v \rangle$ depends only on T and atomic properties
- but if f_{ν} not small, critical density depends on local radiation field

so when partner density $n_c \gg n_{c,crit}$: state population set by $T \to T_{gas}$ and when $n_c \ll n_{c,crit}$: state population set by $T \to T_{rad}$

Awesome Example: Cosmic 21 cm Radiation

CMB today, redshift z = 0, has $T_{cmb}(0) = 2.725 \text{ K} \gg T_{ex,21 \text{ cm}}$ but what happens over cosmic time?

fun & fundamental cosmological result: (relativistic) momentum redshifts: $p \propto 1/a(t)$, which means

$$p(z) = (1+z) p(0)$$
 (22)

where p(0) is observed momentum today (z = 0)

why? photon or de Broglie wavelength λ is a *length*, so

$$\lambda(t) = a(t) \ \lambda_{\text{emit}} = \frac{\lambda_0}{(1+z)}$$
(23)

and quantum relation $p = h/\lambda$ implies $p \propto (1+z)$

Q: implications for gas vs radiation after recombination?

Thermal History of Cosmic Gas and Radiation

until recombination (CMB formation) $z \ge z_{rec} \sim 1000$ (mostly) hydrogen gas is ionized, tightly coupled to CMB via Thomson scattering: $T_{cmb} = T_{gas}$

after recombination, before gas decoupling $z_{\rm dec} \sim 150 \lesssim z \leq z_{\rm rec}$

- most gas in the Universe is *neutral* but a small "residual" fraction $x_e \sim 10^{-5}$ of e^- remain ionized
- Thompson scattering off residual free e^- ($x_e \sim 10^{-5}$) still couples gas to CMB $\rightarrow T_{cmb} = T_{gas}$ maintained
- \bullet until about $z_{\rm dec} \sim$ 150, when Thomson scattering ineffective, gas decoupled

22

Q: after decoupling, net effect of 21 cm transition?