
Astronomy 501: Radiative Processes

Lecture 3

Aug 31, 2018

Announcements:

• Problem Set 1 posted, due at start of class next Friday

• you may speak to me, the TA, and other students

but you must understand your own answers

and write them yourself and in your own words

you may not consult old 501 problem sets/solutions

• Typo in printout: 3(b) should read “Evaluate Iλ(s)”

Last time:

• a blizzard of definitions!

Q: what is intensity? how does it differ from flux?

Q: what is intensity in ordinary experience/language?

Q: what is specific intensity? average intensity?
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On Frequency and Wavelength

For most of the course, we will describe specific intensity
using Iν ≡ dI/dν, i.e., in “frequency space”

But we could as well use Iλ ≡ dI/dλ: “wavelength space”

Of course, the two are related: in (ν, ν + dν)
the intensity Iν dν is equal to Iλ dλ
where (λ, λ + dλ) is the corresponding wavelength interval:

i.e., ν = c/λ, and dν = −c dλ/λ2

Thus the two intensity descriptions differ by a change of variable

and thus by a Jacobian factor:

Iλ =

∣

∣

∣

∣

dν

dλ

∣

∣

∣

∣

Iν =
c

λ2
Iν(λ) (1)

• the same Jacobian factor is needed for Fλ, uλ, etc.
• note that λIλ = νIν: both give the intensity

per unit log interval |dλ/λ| = |dν/ν|; good to show on plots!
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Photon Number

when using the photon picture of light

the basic units are counts = number of photons

where for monochromatic photons, dE = Eν dN = hν dN

→ useful to introduce the specific number intensity

Iν =
dNγ

dt dA dΩ dν
=

1

hν

dE

dt dA dΩ dν
=

Iν

hν
(2)

and specific number flux

Φν =

∫

Iν cos θ dΩ =
1

hν

∫

Iν cos θ dΩ =
Fν

hν
(3)
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Momentum Flux

consider the flux of photon momentum

in direction normal to area dA

For photons in solid angle dΩ, from direction angle θ

contribution to number flux is dΦν = Iν/hν cos θ dΩ

photon momentum pν = hν/c has normal component

pν,⊥ = hν/c cos θ

photon momentum flux ⊥ surface is radiation pressure

Pν =
∫

pν,⊥ dΦν =
1

c

∫

Iν cos2 θ dΩ (4)

for isotropic radiation

P iso
ν = 2π

I iso
ν

c

∫ 1

−1
µ2dµ =

4π

3

I iso
ν

c
(5)
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Energy Density

consider a bundle of rays passing through

a small volume dV

energy density uν(Ω) for bundle

defined by dE = uν(Ω) dΩ dV

but dV = dA dh, and flux thru height dh

in time dt = dh/c, so

dV = c dA dt

dΩ

dA

dh = c dt
volume

dV = c dA dt

thus we have

dE = c uν(Ω) dA dt dΩ (6)

but by definition dE = Iν dA dt dΩ, so

uν(Ω) =
Iν

c
(7)
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specific energy density in bundle in solid angle dΩ

uν(Ω) =
Iν

c
(8)

so total energy density is

uν =
∫

uν dΩ (9)

=
1

c

∫

Iν dΩ (10)

=
4πJν

c
(11)

we can similarly find the photon specific number density

nν =
uν

hν
=

4πJν

hcν
(12)
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Radiation Equation of State

recall: for isotropic radiation, pressure is

momentum flux

P iso
ν =

4π

3

I iso
ν

c
=

uiso
ν

3
(13)

pressure is 1/3 energy density, at each frequency!

note: relationship between pressure and (energy) density is

an equation of state

thus people (=cosmologists) generalize this: P = wu

with w the “equation of state parameter”

we find: for isotropic radiation, wrad = 1/37



Integrated Intensity, Flux, Energy Density

specific intensity is per unit frequency: Iν = dI/dν

total or integrated intensity sums over all frequencies:

I =

∫

Iν dν (14)

similarly, can define integrated flux

F =

∫

Fν dν (15)

and integrate number and energy densities

n =

∫

nν dν (16)

u =
∫

uν dν (17)

Q: what if we use a broadband filter? Examples?
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Cosmic Color Wheel: Filtered Light

we measure using a broadband filter (“color”)

with a finite passband window

write transmission fraction or probability for photons at ν

W (ν) =

(

transmitted light

incident light

)

ν
∈ [0,1] (18)

e.g., the classic UBV GRIZ..., or ugrizY

Q: who uses these? www: transmission curves

Then for band i, can define intensity

Ii =

∫

band i
Iν dν =

∫

Wi(ν) Iν dν (19)

and similarly for color flux Fi =
∫

WiFν dν etc9



Constancy of Specific Intensity in Free Space

in free space: no emission, absorption, scattering,

consider rays normal to areas dA1 and dA2

separated by a distance r

energy flow is conserved, so

dE1 = Iν1 dA1 dt dΩ1 dν1 = dE2 = Iν2 dA2 dt dΩ2 dν2

• as seen by dA1, the solid angle dΩ1

subtended by dA2 is dΩ1 = dA2/r2,

and similarly dΩ2 = dA1/r2

dA

dA

r

1

2

• and in free space dν1 = dν2, so:

Iν1 = Iν2 (20)1
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Iν1 = Iν2 (21)

thus: in free space, the intensity is constant along a ray

that is: intensity of an object in free space

is the same anywhere along the ray

so along a ray in free space: Iν = constant

or along small increment ds of the ray’s path

dIν

ds

free
= 0 (22)

this means: when viewing an object across free space,

the intensity of the object is constant

regardless of distance to the object!

⇒ conservation of surface brightness

this is huge! and very useful!

Q: what is implied? how can this be true–what about inverse

square law? everyday examples?
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Conservation of Surface Brightness

consider object in free space at distance r

with luminosity L and project area A ⊥ to sightline

flux from source follows usual inverse square

F =
L

4πr2
(23)

but intensity is flux per solid angle

and since Ω = A/r2, we have

I =
F

Ω
=

L/4πr2

A/r2
=

L

4πA
(24)

surface brightness is independent of distance!

r

A

L

and note I = L/4πA: intensity really is surface brightness

i.e., brightness per unit surface area and solid angle
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Consequences of Surface Brightness Conservation

resolved objects in free space

have same I at all distances

• Sun’s brightness at surface is same as you see in sky

but at surface subtends 2π steradian – yikes!

• similar planetary nebulae or galaxies all have similar I

regardless of distance

• people and objects across the room don’t look 1/r2 dimmer

than things next to you

fun exercise: when in your everyday life

do you actually experience the inverse square law for flux?
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Adding Sources

matter can act as source and as sink for propagating light

the light energy added by glowing source in small volume dV ,

into a solid angle dΩ, during time interval dt,

and in frequency band (ν, ν + dν), is written

dEemit = jν dV dt dΩ dν (25)

defines the emission coefficient

jν =
dEemit

dV dt dΩ dν
(26)

• power emitted per unit volume, frequency, and solid angle

• cgs units: [jν] = [erg cm−3 s−1 sr−1 Hz−1]

• similarly can define jλ, and integrated j =
∫

jνdν

1
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for isotropic emitters,

or for distribution of randomly oriented emitters, write

jν =
qν

4π
(27)

where qν is radiated power per unit volume and frequency

sometimes also define emissivity ǫν = qν/ρ

energy emitted per unit freq and mass, with ρ =mass density

beam of area dA going distance ds

has volume dV = dA ds
dA

ds

so the energy change is dE = jν ds dA dt dΩ dν

and the intensity change is

dIν
sources

= jν ds (28)

1
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Adding Sinks

as light passes through matter, energy can also be lost

due to scattering and/or absorption

we model this as follows:

dIν = −αν Iν ds (29)

features/assumptions:

• losses proportional to distance ds traveled

Q: why is this reasonable?

• losses proportional to intensity

Q: why is this reasonable?

• defines energy loss per unit pathlength, i.e.,

absorption coefficient αν

Q: units/dimensions of αν?

1
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Absorption Cross Section

consider “absorbers” with a number density na

each of which presents the beam with an

effective cross-sectional area σν

over length ds, number of absorbers is

dNa = na dA ds

ds

dA side view

a “dartboard problem”– over beam area dA

total “bullseye” area: σνdNa = naσν dA ds
face view

dA

σ

so absorption probability is

dPabs =
total bullseye area

total beam area
= na σν ds (30)

Q: for what length ds does Pabs → 1?

Q: physical significance of naσν?

1
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Cross Sections, Mean Free Path, and Absorption

absorption probability large when photon travels mean free path

ℓmfp =
1

naσν
(31)

so we can write dPabs = ds/ℓmfp

and thus beam energy change is

dE = −dPabsE = −naσνIν ds dA dt dΩ dν (32)

which must lead to an intensity change

dIν
abs
= −na σν Iν ds (33)

Q: and so?1
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dIν
abs
= −na σν Iν ds (34)

has the expected form, and we identify the absorption coeffcient

αν = na σν =
1

ℓmfp
(35)

note that absorption depends on

• microphysics via the cross section σν

• astrophysics via density nabs of scatterers

often, write αν = ρκν,

defines opacity κν = (n/ρ)σν ≡ σν/m

with m = ρ/n the mean mass per absorber

Q: so what determines σν? e.g., for electrons?

1
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Cross Sections

Note that the absorption cross section σν is

and effective area presented by absorber

for “billiard balls” = neutral, opaque, macroscopic objects

this is the same as the geometric size

but generally, cross section is unrelated to geometric size

e.g., electrons are point particles (?) but still scatter light

• so generalize our ideas so that

dIν = −na σν ds defines the cross section

• determined by the details of light-matter interactions

• can be–and usually is!–frequency dependent

• differ according to physical process

the study of which will be the bulk of this course!

Note: “absorption” here is anything removing energy from beam

→ can be true absorption, but also scattering

2
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The Equation of Radiative Transfer

Now combine effects of sources and sinks

that change intensity as light propagates

dIν

ds
= −ανIν + jν (36)

equation of radiative transfer

0

s

s

ds

• fundamental equation in this course

• sources parameterized via jν

• sinks parameterized via αν = na σν = ρκν

2
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Transfer Equation: Limiting Cases

equation of radiative transfer:

dIν

ds
= −ανIν + jν (37)

Sources but no Sinks

if sources exist (and are independent of Iν) but no sinks: αν = 0

dIν

ds
= jν (38)

solve along path starting at sightline distance s0:

Iν(s) = Iν(s0) +

∫ s

s0
jν ds′ (39)

• the increment in intensity is due to

integral of sources along sightline

• for jν → 0: free space case

and Iν(s) = Iν(s0): recover surface brightness conservation!
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Special Case: Sinks but no Sources

if absorption only, no sources: jν = 0

dIν

ds
= −ανIν (40)

and so on a sightline from s0 to s

Iν(s) = Iν(s0) e
−

∫ s
s0

αν ds′
(41)

• intensity decrement is exponential!

• exponent depends on line integral of absorption coefficient

useful to define optical depth via dτν ≡ αν ds

τν(s) =

∫ s

s0
αν ds′ (42)

and thus for absorption only Iν(s) = Iν(s0)e
−τν(s)
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