Astro 501: Radiative Processes
Lecture 36
December 5, 2018

Announcements:

e Problem Set 11-The Final Frontier next time
Q1 wordy but not much to calculate!

last time:
e COsmic rays Q: what are they? spectra?
e charged particle motion in (uniform) magnetic field
Q. motion along field? orthogonal to field?
Q. total particle energy evolution?
Q. characteristic scales?
Q: implications for cosmic-ray radiation?
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charged particle in uniform B
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e uniform velocity v along B i
e uniform circular motion orthogonal to B
gyrofrequency wg = qB/ymc
gyroradius rgyro = v | Jwg = mcyv | /qB = ¢cp | /qB
e net motion: spiral around field line

curved path —acceleration —radiation!
e Nnon-relativistic particles: cyclotron radiation
e ultra-relativistic particles: synchrotron radiation

V>0



Svynchrotron Radiation: Total Power

for isotropic electron population
average emitted power per electron:
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Q. energy dependence for non-relativistic electrons?
Q. energy dependence for ultra-relativistic electrons?
Q: stopping timescale for ultra-relativistic electrons?



Awesome Example: Radio Galaxies

awesome astrophysical example: radio galaxies
Q. what are they?

www: radio images of Cygnus A, Centaurus A

Q. how to find the spectrum of synchrotron radiation?

Q. why is it non-trivial? hint—think of relativistic circular motion



Spectrum of Synchrotron Radiation: Order of Magnitude

key issue:
radiation from a relativistic accelerated particle is beamed

into forward cone of opening angle Opeqm ~ 1/7

SO observer receives pulses or ‘flashes” of radiation
spread over narrow timescale < 27 /wpg

sharply peaked signal in time domain

= broad signal in frequency domain



consider relativistic charge moving in circle of radius a

observer only sees emission over angular range

A ~ 29beam ~

=N

representing a path length
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curvature radius a = v/wpgsina, with sina =wv /v so
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if the particle passes point 1 at t1 and point 2 at ¢,
As =v(tr —t1), and
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what is arrival time of radiation?
note that point 2 is closer than point 1 by = As
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radiation arrive time duration
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but note that 1 —v/c~ 1/2~2 for relativistic motion Q:why?

and thus radiation arrives in pulse of duration

1
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shorter than wy' by factor ~3!
define critical frequency
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Q. will radiation spectrum cut off above or below wc?



critical frequency

3.3 Sin !
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Fourier transform of pulse At°"" broad up to vc

and should cut off above this

Ve —

numerically:
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Q. lessons? irony?

(10)

(11)



0T

critical = characteristic frequency v, ~ 25 MHz (FE¢/1 GeV)?2
typical cosmic-ray electrons emit in the observable radio
— high-energy electrons can emit low-frequency radiation!

expect synchrotron power of form P(w) ~ P/wc F(w/wc)
with dimensionless function F'(x)

e should be peaked at x ~ 1, then drop sharply

e can only be gotten from an honest calculation!

note: P o 72 but we «x v2 — P/wc indep of v
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for a particle with a fixed v and ~,
conventional to define synchrotron spectrum as

dP 3¢3Bsin
P — by = PTG p (@) (12)
dw 27 mc2 we
wWith we 72
where the synchrotron function (derived in RL) is
4 x 1/3
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with Kg,3(z) the modified Bessel function of order 5/3
— Sharply peaked at wmax = Tmaxwc = 0.29wc

www: plot of synchrotron function

Q. so is this the spectrum we would see for real CR es?
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for a single electron ~
emission spectrum is synchrotron function F'(w/wc)
sharply peaked near wc o wgvy?

but the population of cosmic-ray electrons
has a spectrum of energies and thus of ~

resulting synchrotron spectrum is

e superposition of peaks « 72,

e weighted by electron energy spectrum

Q: what if CRs had two energies? N energies?

Q: what does the real spectrum look like?

Q. what's the synchrotron spectral shape for the ensemble of all
electron energies?
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recall: cosmic-ray electron spectrum well-fit by power law
so number of particles with energy in (E,E + dFE) is

N(E) dE=C EP dE
and so

N(y) dy=C"~7P dy
note that for a single electron v and ~

P(w) x F(w/we) and we = wgy?

SO integrating over full CR spectrum means
(P@) = [P) NG dy

= C’/P(w) v P dy

o /F( w2> ~ P dry
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Q). strategy?
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P x [ 72

change integration variable to = = w/wec = v 2w /wq
— oy = (wa:/wg)_l/Q, and dy = —(w/wg)_l/zgc—3/2dg;

) v P dy (19)
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and so
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with spectral index s = (p—1)/2

even though each electron energy — peaked emission
average over power-law electron distribution
— power-law synchrotron emission
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full expression for power-law electron spectrum
of the form dN/dy = C~~P
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with '(z) the gamma function, with (e +1) =z I'(x)

Q. overall dependence on B7? does this make sense?

Q. expected spectral index?

Q. do you expect the signal to be polarized? how?

V3¢3CBsina I_(p 9) I_(p 1) < mecw >(p1)/2
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Source Function

source function

Jv _ 5/
o, (a2

Sy:

to see this, recall that
iy~ /dE N(E) P(v)
N(E
aVNV_Q/dE ()P(V)
E
thus source function has

S]/ ~J VQE

with typical electron energy £ = m~ for freq v

but v(E) =~ vc(E) ~ E2, so E o v1/2

and thus S, ~ 15/2 independent of electron spectral index
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(26)
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Svynchrotron Radiation: the Big Picture
for relativistic electrons with power-law energy distribution

emission coefficient

gy oc v (P=1)/2 (27)
absorption coefficient
oy oc v (PT4)/2 (28)
source function (note nonthermal character!)
S, o v°/2 (29)

Q. optical depth vs v? implications?
Q. spectrum of a synchrotron emitter?

WWW: awesome example: pulsar wind nebulae

young pulsars are spinning down

much of rotational energy goes into relativistic wind

which collides with the supernova ejecta an emits synchrotron
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Director’'s Cut Extras
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Polarization of Synchrotron Radiation

for an electron with a single pitch angle tana = fuL/qu
— circular motion around field line

— radiation circularly polarized orthogonal to B

and elliptically polarized at arbitrary angles

but with distribution of pitch angles «,
elliptical portion cancels out — partial linear polarization

polarization strength varies with projected angle
of magnetic field on sky

more power orthogonal to projected field direction
— net linear polarization, detailed formulae in RL

averaging over power-law distribution of electron energies
partial polarizationisM=(p+1)/(p+7/3)
and so N = 3/4 for p = 3: highly polarized!



0c

O b b L

Transition from Cyclotron to Synchrotron

How and why are the emission spectra so different
for cyclotron (non-relativistic) vs synchrotron (relativistic)?

recall: in either case, electron motion is strictly periodic
with angular frequency

Bsin
=== (30)

wB
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" nature of Fourier spectrum of received field?
- Fourier spectrum of emission for single pitch angle?
- spectrum in nonrelativistic case v — 17

- spectrum in mildly relativistic case?



N
=

electron motion at fixed « strictly periodic with wp

— received field also strictly periodic

— Fourier transform of field is nonzero only for
discrete series of frequencies mwg, m &€ 1,2,...

and thus received radiation also is a Fourier series in wp

cyclotron = nonrelativistic case: see field £ = Eg coswpt
Fourier series has one term: the fundamental frequency wp

when mildly relativistic: Doppler effects add harmonic at 2wpg
and electric field shape modified to sharper, narrower peak

going to strongly relativistic: many harmonics excited
series “envelope” approaches F'(w/wc)
electric field — very sharp, very narrow peak

with distribution of pitch angles:
“spaces’” in series filled in — continuous spectrum
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Svynchrotron Self-Absorption

Recall strategy so far:

e Calculate emission coefficient j,

e remember Kirchoff's law j, = ap By (T)
e solve for ayp = 5,/ B, (T)

We have already found

Q. why won't this work here?

Q. what do we need to do?” hint—how did we handle a two-level
system?
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Kirchoff's law is only good for a thermal system
where emitter and absorber particles are nonrelativistic
and have Maxwell-Boltzmann energy/momentum distribution

here: electrons are relativistic and nonthermal

really: Kirchoff is example of detailed balance
— in equilibrium, emission and absorption rates are the same —
this still applies in nonthermal case

recall from 2-level system, with F> = Fq1 4+ hv

2-level hv

ay, "= E[N(El)Blz—N(Ez)le] ¢(v) (31)

Q: physical interpretation of n(E1)? B1o27 B>1? ¢(v)7?

Q. how should this be modified for synchrotron electrons?



in 2-level system, emission at frequency v
arises from unique energy level spacing F>» = E1 + hv

but cosmic ray electrons have continuous energy spectrum
— emission at v can arise from any two energies:
generalized to

- Z > [n(E1)Bi1z — n(E2)Bo1] ¢21(v) (32)

T E1 B

e with ¢21(v) — é[v — (F2 — E1)/h]
e first term: true absorption
e second term: stimulated emission

the goal: recast this in terms of what we know
X synchrotron emission j,
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we have

—ZZ [n(E1)B12 — n(E2)B21] ¢21(v) (33)

T E Es
use Einstein relations, good for thermal and nonthermal

e spontaneous emission rate from state E>: Ay = 2hV3B21/02
e absorption and stimulated emission: By = Bqo

note that spontaneous emission is what we know!
we have found synchrotron power P(v, E5) = 27 P(w),
with E> the radiating electron’s energy

P(v,Ep) = hv) A1 ¢21(v) (34)
Eo

now impose Einstein conditions and simplify

Q: role of ¢p1 and double sum g > g, 7
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profile function ¢>1(v) — 6(E> — E1 — hv)
fixes 1 for a given E» and v
and double sum — single sum

o2

8mhy3

ay = Z [n(E> — hv) —n(E2)] P(v, E2) (35)
so far: schematic sum over electron energies
but really a continuum

recall: in each phase space cell h3

e number of electron states with momentum p is ge f(p)

e volume density of states in momentum space volume is d3p/h3
and thus

2 1
8rhv3 h3 / [f(03) — f(p2)] P(v, E2) d°ps (36)

where p§ IS the momentum corresponding to energy E> — hv

Xy — (e

Q: how is f related to electron spectrum N(E)?7?
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number of electrons per unit volume
with energy in (E,E+ dE) is N(F) dE

but this means that

41 g
N(E) dE = — == p° f(p) dp

and for ultrarelativistic electrons, E = c¢p

thus we have

2 N(E —hv) N(E)
- 87rhu3/ [ (E —hv)2  E2 ] B* P(v, E) dB

and since hry < FE, expand to first order

Ay

2
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and for a power-law N(FE) « E~P, we have
N(E) N(E)
— E%8 = 2
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Svynchrotron Absorption

finally then
N(E)

qy —

/ iE P(v, E)

note frequency dependence.

e prefactor v 2

e integral [dE P(vV)N(E)/E ~ dE P(v)E~(®P+1) ~ ,—p/2
net scaling: a, oc v~ (P1+4)/2

full result

oy —
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