
Astro 501: Radiative Processes

Lecture 36

December 5, 2018

Announcements:

• Problem Set 11–The Final Frontier next time

Q1 wordy but not much to calculate!

last time:

• cosmic rays Q: what are they? spectra?

• charged particle motion in (uniform) magnetic field

Q: motion along field? orthogonal to field?

Q: total particle energy evolution?

Q: characteristic scales?

Q: implications for cosmic-ray radiation?
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charged particle in uniform ~B

v‖ = const

d ~v⊥
dt

= ~v × ~ωB

v2 = v2
‖ + v2

⊥ = const

γ =
1

1 − v2/c2
=

Etot

mc2
= const

rgyro

B

vq>0v
q<0

• uniform velocity v‖ along B̂

• uniform circular motion orthogonal to B̂

gyrofrequency ωB = qB/γmc

gyroradius rgyro = v⊥/ωB = mcγv⊥/qB = cp⊥/qB

• net motion: spiral around field line

curved path →acceleration →radiation!

• non-relativistic particles: cyclotron radiation

• ultra-relativistic particles: synchrotron radiation
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Synchrotron Radiation: Total Power

for isotropic electron population

average emitted power per electron:

Pe =

∣

∣

∣

∣

dEe

dt

∣

∣

∣

∣

=

(

2

3

)2

r20 c γ2βB2 =
4

3
σT c β2γ2 uB (1)

where σT = 8πr20/3 and uB = B2/8π

Q: energy dependence for non-relativistic electrons?

Q: energy dependence for ultra-relativistic electrons?

Q: stopping timescale for ultra-relativistic electrons?
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Awesome Example: Radio Galaxies

awesome astrophysical example: radio galaxies

Q: what are they?

www: radio images of Cygnus A, Centaurus A

Q: how to find the spectrum of synchrotron radiation?

Q: why is it non-trivial? hint–think of relativistic circular motion
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Spectrum of Synchrotron Radiation: Order of Magnitude

key issue:

radiation from a relativistic accelerated particle is beamed

into forward cone of opening angle θbeam ∼ 1/γ

K’
K

γ

so observer receives pulses or “flashes” of radiation

spread over narrow timescale ≪ 2π/ωB

sharply peaked signal in time domain

⇒ broad signal in frequency domain
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consider relativistic charge moving in circle of radius a

s

a

2
1

∆θ

∆

observer only sees emission over angular range

∆θ ≃ 2θbeam ≃ 2

γ
(2)

representing a path length

∆s = a ∆θ =
2a

γ
(3)
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curvature radius a = v/ωB sinα, with sinα = v⊥/v so

∆s ≃ 2v

γωB sinα
(4)

if the particle passes point 1 at t1 and point 2 at t2
∆s = v(t2 − t1), and

∆t = t2 − t1 ≃ 2

γωB sinα
(5)

what is arrival time of radiation?

note that point 2 is closer than point 1 by ≈ ∆s

∆tarr = tarr2 − tarr1 = ∆t − ∆s

c

= ∆t

(

1 − v

c

)

=
2

γωB sinα

(

1 − v

c

)

s

a

2
1

∆θ

∆
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radiation arrive time duration

∆tarr =
2

γωB sinα

(

1 − v

c

)

(6)

but note that 1 − v/c ≈ 1/2γ2 for relativistic motion Q:why?

and thus radiation arrives in pulse of duration

∆tarr ≈ 1

γ3ωB sinα
(7)

shorter than ω−1
B by factor γ3!

define critical frequency

ωc ≡ 3

2
γ3ωB sinα =

3

2
γ2 qB sinα

mc
=

3

2
γ2 ωg sinα (8)

νc =
ωc

2π
=

3

4π
γ3ωB sinα (9)

Q: will radiation spectrum cut off above or below ωc?
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critical frequency

νc =
3

4π
γ3ωB sinα ∼ 1

∆tarr
(10)

Fourier transform of pulse ∆tarr broad up to νc

and should cut off above this

numerically:

νc = 25 MHz

(

Ee

1 GeV

)2
(

B

1 µGauss

)

sinα (11)

Q: lessons? irony?
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critical = characteristic frequency νc ∼ 25 MHz (Ee/1 GeV)2

typical cosmic-ray electrons emit in the observable radio

→ high-energy electrons can emit low-frequency radiation!

expect synchrotron power of form P(ω) ∼ P/ωc F(ω/ωc)

with dimensionless function F(x)

• should be peaked at x ∼ 1, then drop sharply

• can only be gotten from an honest calculation!

note: P ∝ γ2 but ωc ∝ γ2 → P/ωc indep of γ
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for a particle with a fixed v and γ,

conventional to define synchrotron spectrum as

dP

dω
= P(ω) =

√
3

2π

q3B sinα

mc2
F

(

ω

ωc

)

(12)

with ωc ∝ γ2

where the synchrotron function (derived in RL) is

F(x) = x
∫ ∞

x
K5/3(t) dt −→















4π√
3Γ(1/3)

(

x
2

)1/3
x ≪ 1

(

π
2

)1/2
e−xx1/2 x ≫ 1

(13)

with K5/3(x) the modified Bessel function of order 5/3

→ sharply peaked at ωmax = xmaxωc = 0.29ωc

www: plot of synchrotron function

Q: so is this the spectrum we would see for real CR es?
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for a single electron γ

emission spectrum is synchrotron function F(ω/ωc)

sharply peaked near ωc ∝ ωgγ2

but the population of cosmic-ray electrons

has a spectrum of energies and thus of γ

resulting synchrotron spectrum is

• superposition of peaks ∝ γ2,

• weighted by electron energy spectrum

Q: what if CRs had two energies? N energies?

Q: what does the real spectrum look like?

Q: what’s the synchrotron spectral shape for the ensemble of all

electron energies?
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recall: cosmic-ray electron spectrum well-fit by power law

so number of particles with energy in (E, E + dE) is

N(E) dE = C E−p dE (14)

and so

N(γ) dγ = C′ γ−p dγ (15)

note that for a single electron v and γ

P(ω) ∝ F(ω/ωc) and ωc = ωgγ2

so integrating over full CR spectrum means

〈P(ω)〉 =

∫

P(ω) N(γ) dγ (16)

= C′
∫

P(ω) γ−p dγ (17)

∝
∫

F

(

ω

ωgγ2

)

γ−p dγ (18)

Q: strategy?
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〈P(ω)〉 ∝
∫

F

(

ω

ωgγ2

)

γ−p dγ (19)

change integration variable to x = ω/ωc = γ−2ω/ωg

→ γ = (ωx/ωg)−1/2, and dγ = −(ω/ωg)−1/2x−3/2dx

〈P(ω)〉 ∝
(

ω

ωg

)−(p−1)/2 ∫

F(x) x(p−3)/2 dx (20)

and so

〈P(ω)〉 ∝ ω−(p−1)/2 = ω−s (21)

with spectral index s = (p − 1)/2

even though each electron energy → peaked emission

average over power-law electron distribution

→ power-law synchrotron emission
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full expression for power-law electron spectrum

of the form dN/dγ = Cγ−p

4πjtot(ω) =

√
3q3CB sinα

2(p + 1)πmc2
Γ

(

p

4
+

9

12

)

Γ

(

p

4
− 1

12

)

(

mcω

3qB sinα

)−(p−1)/2

(22)

with Γ(x) the gamma function, with Γ(x + 1) = x Γ(x)

Q: overall dependence on B? does this make sense?

Q: expected spectral index?

Q: do you expect the signal to be polarized? how?
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Source Function

source function

Sν =
jν

αν
∝ ν−(p−1)/2

ν−(p+4)/2
= ν5/2 (23)

to see this, recall that

jν ∼
∫

dE N(E) P(ν) (24)

αν ∼ ν−2
∫

dE
N(E)

E
P(ν) (25)

thus source function has

Sν ∼ ν2Ē (26)

with typical electron energy Ē = mγ̄ for freq ν

but ν(E) ≈ νc(E) ∼ E2, so Ē ∝ ν1/2

and thus Sν ∼ ν5/2 independent of electron spectral index
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Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

jν ∝ ν−(p−1)/2 (27)

absorption coefficient

αν ∝ ν−(p+4)/2 (28)

source function (note nonthermal character!)

Sν ∝ ν5/2 (29)

Q: optical depth vs ν? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae

young pulsars are spinning down
much of rotational energy goes into relativistic wind

which collides with the supernova ejecta an emits synchrotron
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Director’s Cut Extras
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Polarization of Synchrotron Radiation

for an electron with a single pitch angle tanα = v⊥/v‖
→ circular motion around field line

→ radiation circularly polarized orthogonal to ~B

and elliptically polarized at arbitrary angles

but with distribution of pitch angles α,

elliptical portion cancels out → partial linear polarization

polarization strength varies with projected angle

of magnetic field on sky

more power orthogonal to projected field direction

→ net linear polarization, detailed formulae in RL

averaging over power-law distribution of electron energies

partial polarization is Π = (p + 1)/(p + 7/3)

and so Π = 3/4 for p = 3: highly polarized!
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Transition from Cyclotron to Synchrotron

How and why are the emission spectra so different

for cyclotron (non-relativistic) vs synchrotron (relativistic)?

recall: in either case, electron motion is strictly periodic

with angular frequency

ωB =
qB sinα

mcγ
(30)

Q: nature of Fourier spectrum of received field?

Q: Fourier spectrum of emission for single pitch angle?

Q: spectrum in nonrelativistic case γ → 1?

Q: spectrum in mildly relativistic case?
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electron motion at fixed α strictly periodic with ωB
→ received field also strictly periodic

→ Fourier transform of field is nonzero only for

discrete series of frequencies mωB, m ∈ 1,2, . . .

and thus received radiation also is a Fourier series in ωB

cyclotron = nonrelativistic case: see field E = E0 cosωBt
Fourier series has one term: the fundamental frequency ωB

when mildly relativistic: Doppler effects add harmonic at 2ωB
and electric field shape modified to sharper, narrower peak

going to strongly relativistic: many harmonics excited

series “envelope” approaches F(ω/ωc)

electric field → very sharp, very narrow peak

with distribution of pitch angles:

“spaces” in series filled in → continuous spectrum
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Synchrotron Self-Absorption

Recall strategy so far:

• calculate emission coefficient jν

• remember Kirchoff’s law jν = αν Bν(T)

• solve for αν = jν/Bν(T)

We have already found

Q: why won’t this work here?

Q: what do we need to do? hint–how did we handle a two-level

system?
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Kirchoff’s law is only good for a thermal system

where emitter and absorber particles are nonrelativistic

and have Maxwell-Boltzmann energy/momentum distribution

here: electrons are relativistic and nonthermal

really: Kirchoff is example of detailed balance

→ in equilibrium, emission and absorption rates are the same →
this still applies in nonthermal case

recall from 2-level system, with E2 = E1 + hν

αν
2-level
=

hν

4π
[n(E1)B12 − n(E2)B21] φ(ν) (31)

Q: physical interpretation of n(E1)? B12? B21? φ(ν)?

Q: how should this be modified for synchrotron electrons?
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in 2-level system, emission at frequency ν

arises from unique energy level spacing E2 = E1 + hν

but cosmic ray electrons have continuous energy spectrum

→ emission at ν can arise from any two energies:

generalized to

αν =
hν

4π

∑

E1

∑

E2

[n(E1)B12 − n(E2)B21] φ21(ν) (32)

• with φ21(ν) → δ[ν − (E2 − E1)/h]

• first term: true absorption

• second term: stimulated emission

the goal: recast this in terms of what we know

synchrotron emission jν
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we have

αν =
hν

4π

∑

E1

∑

E2

[n(E1)B12 − n(E2)B21] φ21(ν) (33)

use Einstein relations, good for thermal and nonthermal

• spontaneous emission rate from state E2: A21 = 2hν3B21/c2

• absorption and stimulated emission: B21 = B12

note that spontaneous emission is what we know!

we have found synchrotron power P(ν, E2) = 2πP(ω),

with E2 the radiating electron’s energy

P(ν, E2) = hν
∑

E2

A21 φ21(ν) (34)

now impose Einstein conditions and simplify

Q: role of φ21 and double sum
∑

E1

∑

E2
?
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profile function φ21(ν) → δ(E2 − E1 − hν)

fixes E1 for a given E2 and ν

and double sum → single sum

αν =
c2

8πhν3

∑

E2

[n(E2 − hν) − n(E2)] P(ν, E2) (35)

so far: schematic sum over electron energies

but really a continuum

recall: in each phase space cell h3

• number of electron states with momentum p is ge f(p)

• volume density of states in momentum space volume is d3p/h3

and thus

αν = ge
c2

8πhν3

1

h3

∫

[

f(p∗2) − f(p2)
]

P(ν, E2) d3p2 (36)

where p∗2 is the momentum corresponding to energy E2 − hν

Q: how is f related to electron spectrum N(E)?
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number of electrons per unit volume
with energy in (E, E + dE) is N(E) dE

but this means that

N(E) dE =
4π ge

h3
p2 f(p) dp (37)

and for ultrarelativistic electrons, E = cp

thus we have

αν =
c2

8πhν3

∫

[

N(E − hν)

(E − hν)2
− N(E)

E2

]

E2 P(ν, E) dE (38)

and since hν ≪ E, expand to first order

αν = − c2

8πν2

∫

dE P(ν, E) E2 ∂E

[

N(E)

E2

]

(39)

and for a power-law N(E) ∝ E−p, we have

− E2∂E

[

N(E)

E2

]

= (p + 2)
N(E)

E
(40)
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Synchrotron Absorption

finally then

αν = (p + 2)
c2

8πν2

∫

dE P(ν, E)
N(E)

E
(41)

note frequency dependence:

• prefactor ν−2

• integral
∫

dE P(ν)N(E)/E ∼ dE P(ν)E−(p+1) ∼ ν−p/2

net scaling: αν ∝ ν−(p+4)/2

full result

αν =

√
3

8π
Γ

(

3p + 2

12

)

Γ

(

3p + 22

12

)

(

3q

2πm3c5

)p/2
(

q3C

m

)

(B sinα)(p+2)/2 ν−(p+4)/22
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