Astro 501: Radiative Processes Lecture 36 December 5, 2018

Announcements:

• Problem Set 11–The Final Frontier next time Q1 wordy but not much to calculate!

last time:

- cosmic rays *Q*: what are they? spectra?
- charged particle motion in (uniform) magnetic field Q: motion along field? orthogonal to field?
 - *Q: total particle energy evolution?*
 - Q: characteristic scales?
 - Q: implications for cosmic-ray radiation?

charged particle in uniform \vec{B}

$$\begin{aligned} v_{\parallel} &= \text{ const} \\ \frac{dv_{\perp}}{dt} &= \vec{v} \times \vec{\omega}_B \\ v^2 &= v_{\parallel}^2 + v_{\perp}^2 = \text{const} \\ \gamma &= \frac{1}{1 - v^2/c^2} = \frac{E_{\text{tot}}}{mc^2} = \text{const} \end{aligned}$$

• uniform velocity v_{\parallel} along \hat{B}

N

- uniform circular motion orthogonal to \hat{B} gyrofrequency $\omega_B = qB/\gamma mc$ gyroradius $r_{gyro} = v_{\perp}/\omega_B = mc\gamma v_{\perp}/qB = cp_{\perp}/qB$
- net motion: spiral around field line

curved path \rightarrow acceleration \rightarrow radiation!

- non-relativistic particles: cyclotron radiation
- ultra-relativistic particles: synchrotron radiation

Synchrotron Radiation: Total Power

for isotropic electron population average emitted power per electron:

$$P_e = \left|\frac{dE_e}{dt}\right| = \left(\frac{2}{3}\right)^2 r_0^2 \ c \ \gamma^2 \beta B^2 = \frac{4}{3}\sigma_T \ c \ \beta^2 \gamma^2 \ u_B \qquad (1)$$

where $\sigma_T = 8\pi r_0^2/3$ and $u_B = B^2/8\pi$

Q: energy dependence for non-relativistic electrons?
Q: energy dependence for ultra-relativistic electrons?
Q: stopping timescale for ultra-relativistic electrons?

Awesome Example: Radio Galaxies

awesome astrophysical example: radio galaxies *Q: what are they?*

www: radio images of Cygnus A, Centaurus A

Q: how to find the spectrum of synchrotron radiation?

Q: why is it non-trivial? hint–think of relativistic circular motion

Spectrum of Synchrotron Radiation: Order of Magnitude

key issue:

СЛ

radiation from a relativistic accelerated particle is beamed into forward cone of opening angle $\theta_{\rm beam} \sim 1/\gamma$

so observer receives pulses or "flashes" of radiation spread over narrow timescale $\ll 2\pi/\omega_B$ sharply peaked signal in time domain \Rightarrow broad signal in frequency domain

observer only sees emission over angular range

$$\Delta \theta \simeq 2\theta_{\text{beam}} \simeq \frac{2}{\gamma}$$
 (2)

representing a path length

$$\Delta s = a \ \Delta \theta = \frac{2a}{\gamma} \tag{3}$$

σ

curvature radius $a = v/\omega_B \sin \alpha$, with $\sin \alpha = v_\perp/v$ so

$$\Delta s \simeq \frac{2v}{\gamma \omega_B \sin \alpha} \tag{4}$$

if the particle passes point 1 at t_1 and point 2 at t_2 $\Delta s = v(t_2 - t_1)$, and

$$\Delta t = t_2 - t_1 \simeq \frac{2}{\gamma \omega_B \sin \alpha} \tag{5}$$

what is *arrival time* of radiation? note that point 2 is closer than point 1 by $\approx \Delta s$

$$\Delta t^{\operatorname{arr}} = t_2^{\operatorname{arr}} - t_1^{\operatorname{arr}} = \Delta t - \frac{\Delta s}{c}$$
$$= \Delta t \left(1 - \frac{v}{c} \right)$$
$$= \frac{2}{\gamma \omega_B \sin \alpha} \left(1 - \frac{v}{c} \right)$$

radiation arrive time duration

$$\Delta t^{\rm arr} = \frac{2}{\gamma \omega_B \sin \alpha} \left(1 - \frac{v}{c} \right) \tag{6}$$

but note that $1 - v/c \approx 1/2\gamma^2$ for relativistic motion Q:why?

and thus radiation arrives in pulse of duration

$$\Delta t^{\rm arr} \approx \frac{1}{\gamma^3 \omega_B \sin \alpha} \tag{7}$$

shorter than ω_B^{-1} by factor γ^3 !

define critical frequency

$$\omega_{\rm C} \equiv \frac{3}{2} \gamma^3 \omega_B \sin \alpha = \frac{3}{2} \gamma^2 \frac{qB \sin \alpha}{mc} = \frac{3}{2} \gamma^2 \omega_{\rm g} \sin \alpha \qquad (8)$$
$$\nu_{\rm C} = \frac{\omega_{\rm C}}{2\pi} = \frac{3}{4\pi} \gamma^3 \omega_B \sin \alpha \qquad (9)$$

 \odot

Q: will radiation spectrum cut off above or below $\omega_{\rm C}$?

critical frequency

$$\nu_{\rm C} = \frac{3}{4\pi} \gamma^3 \omega_B \sin \alpha \sim \frac{1}{\Delta t^{\rm arr}} \tag{10}$$

Fourier transform of pulse $\Delta t^{\rm arr}$ broad up to $\nu_{\rm C}$ and should cut off above this

numerically:

$$\nu_{\rm C} = 25 \text{ MHz} \left(\frac{E_e}{1 \text{ GeV}}\right)^2 \left(\frac{B}{1 \mu \text{Gauss}}\right) \sin \alpha$$
 (11)

Q: lessons? irony?

critical = characteristic frequency $\nu_c \sim 25$ MHz $(E_e/1 \text{ GeV})^2$ typical cosmic-ray electrons emit in the observable *radio* \rightarrow *high-energy* electrons can emit *low-frequency* radiation!

expect synchrotron power of form $P(\omega) \sim P/\omega_{\rm C} F(\omega/\omega_{\rm C})$ with dimensionless function F(x)

- \bullet should be peaked at $x\sim$ 1, then drop sharply
- can only be gotten from an honest calculation!

note: $P\propto\gamma^2$ but $\omega_{\rm C}\propto\gamma^2$ ightarrow $P/\omega_{\rm C}$ indep of γ

for a particle with a fixed v and γ , conventional to define synchrotron spectrum as

$$\frac{dP}{d\omega} = P(\omega) = \frac{\sqrt{3}}{2\pi} \frac{q^3 B \sin \alpha}{mc^2} F\left(\frac{\omega}{\omega_{\rm C}}\right)$$
(12)

with $\omega_{\rm C} \propto \gamma^2$

where the synchrotron function (derived in RL) is

$$F(x) = x \int_{x}^{\infty} K_{5/3}(t) \ dt \longrightarrow \begin{cases} \frac{4\pi}{\sqrt{3}\Gamma(1/3)} \left(\frac{x}{2}\right)^{1/3} & x \ll 1\\ \left(\frac{\pi}{2}\right)^{1/2} e^{-x} x^{1/2} & x \gg 1 \end{cases}$$
(13)

with $K_{5/3}(x)$ the modified Bessel function of order 5/3 \rightarrow sharply peaked at $\omega_{\max} = x_{\max}\omega_{c} = 0.29\omega_{c}$ www: plot of synchrotron function

11

Q: so is this the spectrum we would see for real CR es?

for a **single** electron γ emission spectrum is synchrotron function $F(\omega/\omega_c)$ sharply peaked near $\omega_c \propto \omega_g \gamma^2$

but the *population* of cosmic-ray electrons has a *spectrum* of energies and thus of γ

resulting synchrotron spectrum is

- superposition of peaks $\propto \gamma^2$,
- weighted by electron energy spectrum

Q: what if CRs had two energies? *N* energies?

Q: what does the real spectrum look like?

 $\stackrel{i}{\sim}$ Q: what's the synchrotron spectral shape for the ensemble of all electron energies?

recall: cosmic-ray electron spectrum well-fit by *power law* so number of particles with energy in (E, E + dE) is

$$N(E) \ dE = C \ E^{-p} \ dE \tag{14}$$

and so

$$N(\gamma) \ d\gamma = C' \ \gamma^{-p} \ d\gamma \tag{15}$$

note that for a single electron v and $\gamma P(\omega) \propto F(\omega/\omega_{\rm C})$ and $\omega_{\rm C} = \omega_{\rm g} \gamma^2$

so integrating over full CR spectrum means

$$\langle P(\omega) \rangle = \int P(\omega) N(\gamma) d\gamma$$
 (16)

$$= C' \int P(\omega) \gamma^{-p} d\gamma \qquad (17)$$

$$\propto \int F\left(\frac{\omega}{\omega_{g}\gamma^{2}}\right) \gamma^{-p} d\gamma$$
 (18)

13

Q: strategy?

$$\langle P(\omega) \rangle \propto \int F\left(\frac{\omega}{\omega_{\rm g}\gamma^2}\right) \gamma^{-p} d\gamma$$
 (19)

change integration variable to $x = \omega/\omega_c = \gamma^{-2}\omega/\omega_g$ $\rightarrow \gamma = (\omega x/\omega_g)^{-1/2}$, and $d\gamma = -(\omega/\omega_g)^{-1/2}x^{-3/2}dx$

$$\langle P(\omega) \rangle \propto \left(\frac{\omega}{\omega_{\rm g}}\right)^{-(p-1)/2} \int F(x) \ x^{(p-3)/2} \ dx$$
 (20)

and so

$$\langle P(\omega) \rangle \propto \omega^{-(p-1)/2} = \omega^{-s}$$
 (21)

with spectral index s = (p-1)/2

even though each electron energy \rightarrow peaked emission \downarrow average over power-law electron distribution \rightarrow power-law synchrotron emission full expression for power-law electron spectrum of the form $dN/d\gamma = C\gamma^{-p}$

$$4\pi j_{\text{tot}}(\omega) = \frac{\sqrt{3}q^3 CB \sin\alpha}{2(p+1)\pi mc^2} \Gamma\left(\frac{p}{4} + \frac{9}{12}\right) \Gamma\left(\frac{p}{4} - \frac{1}{12}\right) \left(\frac{mc\omega}{3qB\sin\alpha}\right)^{-(p-1)/2}$$
(22)

with $\Gamma(x)$ the gamma function, with $\Gamma(x+1) = x \Gamma(x)$

Q: overall dependence on B? does this make sense?

Q: expected spectral index?

Q: do you expect the signal to be polarized? how?

Source Function

source function

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} \propto \frac{\nu^{-(p-1)/2}}{\nu^{-(p+4)/2}} = \nu^{5/2}$$
(23)

to see this, recall that

$$j_{\nu} \sim \int dE \ N(E) \ P(\nu)$$
 (24)

$$\alpha_{\nu} \sim \nu^{-2} \int dE \; \frac{N(E)}{E} \; P(\nu)$$
 (25)

thus source function has

$$S_{\nu} \sim \nu^2 \bar{E} \tag{26}$$

with typical electron energy $\overline{E} = m\overline{\gamma}$ for freq ν ⁵ but $\nu(E) \approx \nu_{\rm C}(E) \sim E^2$, so $\overline{E} \propto \nu^{1/2}$ and thus $S_{\nu} \sim \nu^{5/2}$ independent of electron spectral index

Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

$$j_{\nu} \propto \nu^{-(p-1)/2}$$
 (27)

absorption coefficient

$$\alpha_{\nu} \propto \nu^{-(p+4)/2} \tag{28}$$

source function (note nonthermal character!)

$$S_{\nu} \propto \nu^{5/2} \tag{29}$$

Q: optical depth vs ν ? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae young pulsars are spinning down much of rotational energy goes into relativistic wind which collides with the supernova ejecta an emits synchrotron

Polarization of Synchrotron Radiation

for an electron with a single pitch angle $\tan \alpha = v_{\perp}/v_{\parallel}$ \rightarrow circular motion around field line \rightarrow radiation circularly polarized orthogonal to \vec{B} and elliptically polarized at arbitrary angles

but with distribution of pitch angles α , elliptical portion cancels out \rightarrow partial **linear polarization**

polarization strength varies with projected angle of magnetic field on sky more power orthogonal to projected field direction \rightarrow net linear polarization, detailed formulae in RL

19

averaging over power-law distribution of electron energies partial polarization is $\Pi = (p+1)/(p+7/3)$ and so $\Pi = 3/4$ for p = 3: highly polarized!

Transition from Cyclotron to Synchrotron

How and why are the emission spectra so different for cyclotron (non-relativistic) vs synchrotron (relativistic)?

recall: in either case, electron motion is *strictly periodic* with angular frequency

$$\omega_B = \frac{qB\sin\alpha}{mc\gamma} \tag{30}$$

Q: nature of Fourier spectrum of received field?

Q: Fourier spectrum of emission for single pitch angle?

Q: spectrum in nonrelativistic case
$$\gamma
ightarrow 1?$$

Q: spectrum in mildly relativistic case?

electron motion at fixed α strictly periodic with ω_B \rightarrow received field also strictly periodic

 \rightarrow Fourier transform of field is nonzero only for discrete *series* of frequencies $m\omega_B, m \in 1, 2, ...$

and thus received radiation also is a Fourier series in ω_B

cyclotron = nonrelativistic case: see field $E = E_0 \cos \omega_B t$ Fourier series has *one term*: the fundamental frequency ω_B

when mildly relativistic: Doppler effects add harmonic at $2\omega_B$ and electric field shape modified to sharper, narrower peak

going to strongly relativistic: many harmonics excited series "envelope" approaches $F(\omega/\omega_c)$ electric field \rightarrow very sharp, very narrow peak

 $\stackrel{\mbox{\tiny P}}{\longrightarrow}$ with distribution of pitch angles: ''spaces'' in series filled in \rightarrow continuous spectrum

Synchrotron Self-Absorption

Recall strategy so far:

- calculate emission coefficient $j_{
 u}$
- remember Kirchoff's law $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$
- solve for $\alpha_{\nu} = j_{\nu}/B_{\nu}(T)$

We have already found

Q: why won't this work here?

Q: what do we need to do? hint-how did we handle a two-level system?

Kirchoff's law is only good for a *thermal* system where emitter and absorber particles are nonrelativistic and have Maxwell-Boltzmann energy/momentum distribution

here: electrons are relativistic and nonthermal

really: Kirchoff is example of *detailed balance* \rightarrow in equilibrium, emission and absorption rates are the same \rightarrow this still applies in nonthermal case

recall from 2-level system, with $E_2 = E_1 + h\nu$

NB

$$\alpha_{\nu} \stackrel{\text{2-level}}{=} \frac{h\nu}{4\pi} \left[n(E_1) B_{12} - n(E_2) B_{21} \right] \phi(\nu) \tag{31}$$

Q: physical interpretation of $n(E_1)$? B_{12} ? B_{21} ? $\phi(\nu)$?

Q: how should this be modified for synchrotron electrons?

in 2-level system, emission at frequency ν arises from unique energy level spacing $E_2 = E_1 + h\nu$

but cosmic ray electrons have *continuous energy spectrum* \rightarrow emission at ν can arise from *any two energies*: generalized to

$$\alpha_{\nu} = \frac{h\nu}{4\pi} \sum_{E_1} \sum_{E_2} \left[n(E_1) B_{12} - n(E_2) B_{21} \right] \phi_{21}(\nu)$$
(32)

- with $\phi_{21}(\nu) \to \delta[\nu (E_2 E_1)/h]$
- first term: true absorption
- second term: stimulated emission

the goal: recast this in terms of what we know

 $\stackrel{\mathrm{N}}{\scriptscriptstyle{+}}$ synchrotron emission $j_{
u}$

we have

$$\alpha_{\nu} = \frac{h\nu}{4\pi} \sum_{E_1} \sum_{E_2} \left[n(E_1) B_{12} - n(E_2) B_{21} \right] \phi_{21}(\nu)$$
(33)

use Einstein relations, good for thermal and nonthermal

- spontaneous emission rate from state E_2 : $A_{21} = 2h\nu^3 B_{21}/c^2$
- absorption and stimulated emission: $B_{21} = B_{12}$

note that spontaneous *emission* is what we know! we have found synchrotron power $P(\nu, E_2) = 2\pi P(\omega)$, with E_2 the radiating electron's energy

$$P(\nu, E_2) = h\nu \sum_{E_2} A_{21} \phi_{21}(\nu)$$
(34)

now impose Einstein conditions and simplify

20

Q: role of ϕ_{21} and double sum $\sum_{E_1} \sum_{E_2}$?

profile function $\phi_{21}(\nu) \rightarrow \delta(E_2 - E_1 - h\nu)$ fixes E_1 for a given E_2 and ν and double sum \rightarrow single sum

$$\alpha_{\nu} = \frac{c^2}{8\pi h\nu^3} \sum_{E_2} \left[n(E_2 - h\nu) - n(E_2) \right] P(\nu, E_2)$$
(35)

so far: schematic sum over electron energies but really a continuum

recall: in each phase space cell h^3

26

- number of electron states with momentum p is $g_e f(p)$
- \bullet volume density of states in momentum space volume is d^3p/h^3 and thus

$$\alpha_{\nu} = g_e \frac{c^2}{8\pi h\nu^3} \frac{1}{h^3} \int \left[f(p_2^*) - f(p_2) \right] P(\nu, E_2) \ d^3p_2 \tag{36}$$

where p_2^* is the momentum corresponding to energy $E_2-h\nu$

Q: how is f related to electron spectrum N(E)?

number of electrons per unit volume with energy in (E, E + dE) is N(E) dE

but this means that

$$N(E) \ dE = \frac{4\pi \ g_e}{h^3} \ p^2 \ f(p) \ dp \tag{37}$$

and for ultrarelativistic electrons, E = cp

thus we have

$$\alpha_{\nu} = \frac{c^2}{8\pi h\nu^3} \int \left[\frac{N(E - h\nu)}{(E - h\nu)^2} - \frac{N(E)}{E^2} \right] E^2 P(\nu, E) dE$$
(38)

and since $h\nu \ll E$, expand to first order

$$\alpha_{\nu} = -\frac{c^2}{8\pi\nu^2} \int dE \ P(\nu, E) \ E^2 \ \partial_E \left[\frac{N(E)}{E^2}\right]$$
(39)

and for a power-law $N(E) \propto E^{-p}$, we have

$$-E^{2}\partial_{E}\left[\frac{N(E)}{E^{2}}\right] = (p+2)\frac{N(E)}{E}$$
(40)

Synchrotron Absorption

finally then

$$\alpha_{\nu} = (p+2) \frac{c^2}{8\pi\nu^2} \int dE \ P(\nu, E) \ \frac{N(E)}{E}$$
(41)

note frequency dependence:

- prefactor ν^{-2}
- integral $\int dE P(\nu)N(E)/E \sim dE P(\nu)E^{-(p+1)} \sim \nu^{-p/2}$ net scaling: $\alpha_{\nu} \propto \nu^{-(p+4)/2}$

full result

$$\alpha_{\nu} = \frac{\sqrt{3}}{8\pi} \Gamma\left(\frac{3p+2}{12}\right) \Gamma\left(\frac{3p+22}{12}\right) \\ \left(\frac{3q}{2\pi m^{3}c^{5}}\right)^{p/2} \left(\frac{q^{3}C}{m}\right) (B\sin\alpha)^{(p+2)/2} \nu^{-(p+4)/2}$$