Astro 501: Radiative Processes Lecture 37 December 7, 2018

Announcements:

• Problem Set 11—The Final Frontier due now rest for the weary at last!

last time: synchrotron radiation from cosmic-ray electrons

- Q: why do cosmic-ray electrons radiate?
- Q: characteristic synch frequency for electron with γ ?
- Q: what about proton synchrotron? frequency, intensity?
- Q: synchrotron spectrum for power-law e energy distribution?

Synchrotron Radiation

isotropic electrons with single γ, β :

synchrotron power

$$P_e = \left| \frac{dE_e}{dt} \right| = \left(\frac{2}{3} \right)^2 r_0^2 \ c \ \gamma^2 \beta B^2 = \frac{4}{3} \sigma_{\mathsf{T}} \ c \ \beta^2 \gamma^2 \ u_B \tag{1}$$

where $\sigma_{\rm T}=8\pi r_0^2/3$ and $u_B=B^2/8\pi$

synchrotron spectrum peaks at critical frequency

$$\nu_{\rm C} \sim \gamma^2 \nu_{\rm Cyc} = \gamma^2 \frac{m_e c}{qB} \tag{2}$$

for electron distribution $dN/d\gamma = C\gamma^{-p}$

Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

$$j_{\nu} \propto \nu^{-(p-1)/2} \tag{4}$$

absorption coefficient

$$\alpha_{\nu} \propto \nu^{-(p+4)/2} \tag{5}$$

source function (note nonthermal character!)

$$S_{\nu} \propto \nu^{5/2} \tag{6}$$

Q: optical depth vs ν ? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae young pulsars are spinning down much of rotational energy goes into relativistic wind which collides with the supernova ejecta an emits synchrotron

Build Your Toolbox–Synchrotron Radiation

emission physics: matter-radiation interactions

Q: physical conditions for synchrotron emission? absorption?

Q: physical nature of sources?

Q: spectrum characteristics?

Q: frequency range?

real/expected astrophysical sources of synchrotron radiation

Q: what do we expect to emit synchrotron? absorb?

Q: relevant temperatures? EM bands?

Toolbox: Synchrotorn Radiation

emission physics

- physical conditions: relativistic charged particles in magnetic field
- physical sources: relativistic electrons dominate
- spectrum: for electron energy distribution $dN_e/dE_e \propto E_e^{-p}$ synchrotron emission is continuum with power law $j_{\nu} \sim \nu^{-(p-1)/2}$ spectrum and source function $S_{\nu} \sim \nu^{5/2}$

astrophysical sources of synchrotron

- emitters: relativistic electrons: cosmic rays in galaxies or in jets
- temperatures: trick question! sources are nonthermal!
- ullet EM bands: max synch energy depends on max γ and magnetic field, can go from radio to X-ray!

Astrophysical Context: Blazars

we met radio galaxies in the context of synchrotron radiation but there are many beasts in the active galaxy zoo

Blazars

- seen as luminous nuclear region at center of giant elliptical galaxies www: optical blazar images (*R*-band)
- but do not show the elongated jets seen in radio galaxies
- flux shows rapid and large-amplitude time variability
- subclasses: BL Lacertae objects—weak radio emission optically violent variables (OVV)—strong radio emission
- demographics: many fewer blazars than other AGN e.g., Seyfert galaxies
 - www: AGN demographics plot (INTEGRAL)
- blazar emission spans radio to TeV gamma rays

Q: what does this suggest about the nature of blazars?

Blazars: Staring Down the Jet

AGN "Unification Model" www: unification cartoon idea: all active galaxies have similar physical conditions

- a supermassive black hole (SMBH) possibly actively accreting matter
- a surrounding accretion disk, and dusty torus
- a relativistic jet, if SMBH is actively accreting

in unification picture: $blazar = jet\ pointing\ directly\ at\ us!$ "looking down the barrel of the gun" emission from small region of jet "tip" \rightarrow highly variable

blazar spectra www: example over full EM range, two large features

- power-law rise from radio, peaks near optical
- falls to X-rays, then peak and power-law fall at gamma-ray

Q: what could be going on?

Blazar Spectra

Power-law rise from radio to ∼optical

- nonthermal
- similarity with radio galaxies suggests *synchrotron origin* from relativistic electrons in jet

Peak and power-law fall in gamma rays

- in non-flare ("quiescent") state, gamm-ray energy content similar to synchrotron
- suggests similar origin
 - → perhaps a *reprocessing* of the synchrotron photos
- reprocessed how? by the relativistic electrons themselves!

Thus: we want to understand how relativistic electrons interact with photons *Q: the name for which is...?*

9

Note: blazar neutrinos seen! \rightarrow imply proton emission $pp \rightarrow \pi^0 \rightarrow \gamma \gamma!$

Compton Scattering

Thomson Scattering

We already discussed the scattering of light by electrons in the context of *Thomson scattering*

Thomson highlights:

energies of incident photon ϵ and scattered photon ϵ_1 related by

$$\epsilon_1 = \epsilon \tag{7}$$

differential cross section, with $\hat{k} \cdot \hat{k}_1 = \cos \theta$

$$\frac{d\sigma_{\mathsf{T}}}{d\Omega} = \frac{1}{2}r_0^2 \left(1 + \cos^2\theta\right) \tag{8}$$

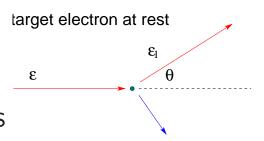
total cross section, with $r_0 = e^2/m_e c^2$

$$\sigma_{\mathsf{T}} = \frac{8\pi}{3}r_0^2\tag{9}$$

Q: what assumptions went into this? When will they fail?

Enter the Quantum: Compton Scattering

Thomson scattering derived for classical EM wave


- $\nu_1 = \nu$ classically
- carrying this to photon picture: $h\nu_1 = h\nu$
 - → coherent or elastic scattering

but really: photon quanta carry momentum and energy

- → and electron will *recoil* and carry away energy
- → expect scattered photon to have less energy, and to move in a different direction

Compton: treat light as massless particle

for photon incident on electron *at rest* conservation of energy and momentum implies

$$\epsilon_1 = \frac{\epsilon}{1 + (\epsilon/m_e c^2)(1 - \cos \theta)} \tag{10}$$

scattered photon energy is lower, and direction different

so the wavelength shifts by

$$\lambda_1 - \lambda = \lambda_{\mathsf{C}}(1 - \cos \theta) \tag{11}$$

where the electron Compton wavelength $\lambda_{\rm C}=h/m_ec=0.02426$ Å

Q: what energy does a photon with λ_{C} have?

Q: What region of the spectrum is this?

Q: when is the wavelength shift important? negligible?

Cross Section for Compton Scattering

Compton wavelength shift is $\Delta \lambda \sim \lambda_{\mathsf{C}}$

- small if $\lambda \gg \lambda_{\rm C}$ i.e., $h\nu \ll m_e c^2$ i.e., radio through soft X-rays
- large if $h\nu \gg m_e c^2$: hard X-rays, gamma rays

differential cross section: Klein-Nishina formula

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \frac{\epsilon_1^2}{\epsilon^2} \left(\frac{\epsilon}{\epsilon_1} + \frac{\epsilon_1}{\epsilon} - \sin^2 \theta \right) \tag{12}$$

- ullet classical Thomson expression recovered when $\epsilon\sim\epsilon_1$
- main effect: *smaller* cross section at high energy
- total cross section, with $x = h\nu/m_ec^2$ in e rest frame

$$\sigma \to \begin{cases} \sigma_{\mathsf{T}} \left(1 - 2x + \cdots\right) & x \ll 1\\ 3\sigma_{\mathsf{T}}/8 \ x^{-1} (\ln 2x + \cdots) & x \gg 1 \end{cases} \tag{13}$$

recall: to understand blazars, we are interested in

high-energy electrons interacting with ambient photons

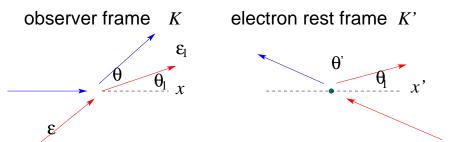
Q: why can't we just use the Compton scattering formulae?

Q: how can we use the formulae?

Inverse Compton Scattering

the usual Compton scattering expressions assume the electron is initially *at rest* and the *photon loses energy* in scattering → "ordinary kinematics" but this is not the case we are interested in!

in a frame where the electron is relativistic


- then there can be a momentum and energy transfer and the photon gains energy
- "upscattered" to higher frequencies
- → "inverse kinematics" inverse Compton scattering

strategy: use Lorentz transformations twice

- 0. start in "lab frame" were e is relativistic
- 1. boost to e rest frame, find scattered photon energy/momentum
- 2. boost back to lab frame to find scattered photon energy

Lab/observer frame K:

- initial electron *relativistic*
- Lorentz factor γ , speed $\beta = v/c$ electron rest frame K':
- ordinary kinematics

Doppler expression: find photon energies in rest frame

$$\epsilon' = \gamma \epsilon (1 - \beta \cos \theta) \tag{14}$$

$$\epsilon_1' = \gamma \epsilon_1 (1 - \beta \cos \theta_1) \tag{15}$$

Compton: with $\hat{k}' \cdot \hat{k}'_1 = \cos \Theta$, and assuming $\epsilon' \ll m_e c^2$

$$\epsilon_1' \approx \epsilon \left[1 - \frac{\epsilon'}{m_e c^2} (1 - \cos \Theta) \right]$$
 (16)

if initial lab-frame photon energy is €

Q: initial photon energy in e rest frame, roughly?

Q: scattered photon energy in e rest frame, roughly?

Q: scattered photon energy lab frame, roughly?

Inverse Compton: Order of Magnitude

```
if initial lab-frame photon energy is \epsilon and lab-frame electron with \gamma\gg 1: in e rest frame: photon energy boosted \rightarrow initial energy \epsilon'\sim\gamma\epsilon
```

still in e rest frame:

if $\epsilon' \ll m_e c^2 \to$ small photon energy change (Thomson) scattered energy $\epsilon'_1 \sim \epsilon' \sim \gamma \epsilon$

back to lab frame: scattered photon energy boosted to $\epsilon_1 \sim \gamma \epsilon_1' \sim \gamma^2 \epsilon_1$

Bottom line: upscattered photon energy $\epsilon_1 \sim \gamma^2 \epsilon$ Q: implications for blazars?

Inverse Compton Power for Single-Electron Scattering

Consider a relativistic electron (γ, β) incident on an isotropic distribution of ambient photons \rightarrow find power going into inverse Compton

Order of magnitude estimate:

- if typical ambient photon energy is ϵ then typical *upscattered energy* is $\epsilon_1 \sim \gamma^2 \epsilon$
- if ambient photon number density is n_{γ} then scattering rate per electron is $\Gamma \sim n_{\gamma} \sigma_{\top} c$ Q: why?

thus expect power = rate of energy into inverse Compton

$$\frac{dE_1}{dt} \sim \Gamma \ \epsilon_1 \sim \gamma^2 \epsilon n_\gamma \sigma_\top c \sim \gamma^2 \sigma_\top c u_\gamma \tag{17}$$

where $u_{\gamma} = \langle \epsilon \rangle n_{\gamma}$ is the ambient photon energy density Q: looks familiar?