Astronomy 501: Radiative Processes Lecture 4 Sept 5, 2018

Announcements:

- Problem Set 1 posted, due at start of class Friday
- Office Hours: me after class, TA tomorrow 11am-noon
- Typo in printout: 3(b) should read "Evaluate $I_{\lambda}(s)$ "

Last time: ingredients of radiative transfer

- free space Q: meaning? I_{ν} result? significance?
- emission *Q: how quantified? physical origin?*
- absorption *Q: how quantified? physical origin?*
- Q: so what determines σ_{ν} ? e.g., for electrons?

Cross Sections

Note that the absorption **cross section** σ_{ν} is and *effective* area presented by absorber

for "billiard balls" = neutral, opaque, macroscopic objects
 this is the same as the geometric size
but generally, cross section is unrelated to geometric size
 e.g., electrons are point particles (?) but still scatter light

• *generalize* our ideas so that

 $dI_{\nu} = -n_{a} \sigma_{\nu} I_{\nu} ds$ defines the cross section

- determined by the details of light-matter interactions
- can be-and usually is!-frequency dependent
- differ according to physical process the study of which will be the bulk of this course!

 $^{\scriptscriptstyle N}$ Note: "absorption" here is anything removing energy from beam \rightarrow can be true absorption, but also scattering

Putting It All Together

apply energy conservation along a pencil of radiation:

$$d\mathcal{E}_{\text{pencil}} = -d\mathcal{E}_{\text{absorb}} + d\mathcal{E}_{\text{emit}} \tag{1}$$

which becomes

 $\frac{dI_{\nu}}{dA} \frac{dt}{dt} \frac{d\Omega}{d\nu} = -\alpha_{\nu} I_{\nu} \frac{dA}{dt} \frac{d\Omega}{d\nu} + j_{\nu} \frac{ds}{dt} \frac{dA}{dt} \frac{d\Omega}{d\nu} \frac{d\nu}{d\nu}$ and simplifies to

$$dI_{\nu} = -\alpha_{\nu}I_{\nu}\,ds + j_{\nu}\,ds \tag{2}$$

this is a Big Deal! Q: why?

ω

The Equation of Radiative Transfer

the mighty equation of radiative transfer

- physical meaning: things look (I_{ν}) the way they do due to sources and along each sightline
- sources parameterized via j_{ν}

4

• sinks parameterized via $\alpha_{\nu} = n_{a} \sigma_{\nu} = \rho \kappa_{\nu} = 1/\ell_{mfp,\nu}$

Transfer Equation: Limiting Cases

equation of radiative transfer:

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{4}$$

Sources but no Sinks

if sources exist but there are no sinks: $\alpha_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = j_{\nu} \tag{5}$$

solve along path starting at sightline distance s_0 :

$$I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu} \, ds' \tag{6}$$

- the *increment* in intensity is due to integral of sources *along sightline*
- С
- for $j_{\nu} \rightarrow 0$: free space case and $I_{\nu}(s) = I_{\nu}(s_0)$: recover surface brightness conservation!

Special Case: Sinks but no Sources

if absorption only, no sources: $j_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \tag{7}$$

and so on a sightline from s_0 to s

$$I_{\nu}(s) = I_{\nu}(s_0) \ e^{-\int_{s_0}^s \alpha_{\nu} \ ds'}$$
(8)

- intensity *decrement* is *exponential*!
- exponent depends on line integral of absorption coefficient

useful to define **optical depth** via $d\tau_{\nu} \equiv \alpha_{\nu} ds$

$$\tau_{\nu}(s) = \int_{s_0}^{s} \alpha_{\nu} \, ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{mfp,\nu}} \tag{9}$$

σ

and thus for absorption only $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}(s)}$

Optical Depth

optical depth, in terms of cross section

$$\tau_{\nu}(s) = \int_{s_0}^{s} n_{a} \sigma_{\nu} ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{mfp,\nu}}$$
(10)
= number of mean free paths (11)

optical depth counts mean free paths along sightline i.e., typical number of absorption events

Limiting cases:

1

• $\tau_{\nu} \ll 1$: optically thin absorption unlikely \rightarrow transparent

• $\tau_{\nu} \gg 1$: optically thick

absorption overwhelmingly likely \rightarrow **opaque**

Column Density

Note "separation of variables" in optical depth

$$\tau_{\nu}(s) = \underbrace{\sigma_{\nu}}_{\text{microphysics}} \underbrace{\int_{s_0}^{s} n_{a}(s') \, ds'}_{\text{astrophysics}}$$

From observations, can (sometimes) infer τ_{ν} Q: how? but cross section σ_{ν} fixed by absorption microphysics i.e., by theory and/or lab data

absorber astrophysics controlled by column density

$$N_a(s) \equiv \int_{s_0}^s n_a(s') \ ds' \tag{13}$$

(12)

line integral of number density over entire line of sight s cgs units $[N_a] = [cm^{-2}]$

 ∞

Q: what does column density represent physically?

column density

$$N_a(s) \equiv \int_{s_0}^s n_{\mathsf{a}} \; ds'$$

so $\tau_{\nu} = \sigma_{\nu} N_{a}$

- column density is projection of 3-D absorber density onto 2-D sky, "collapsing" the sightline "cosmic roadkill"
- if source is a slab \perp to sightline, then N_a is absorber surface density
- if source is multiple slabs \perp to sightline, then N_a sums surface density of all slabs

Q

Q: from N_a , how to recover 3-D density n_a ?

Radiation Transfer Equation, Formal Solution

equation of transfer

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{14}$$

divide by α_{ν} and rewrite

in terms of optical depth $d\tau_{\nu} = \alpha_{\nu} ds$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{15}$$

with the source function

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = \frac{j_{\nu}}{n_{\rm a}\sigma_{\nu}} \tag{16}$$

 $\stackrel{t}{\circ}$ Q: source function dimensions?

Source Function

 $S_{\nu} = j_{\nu}/\alpha_{\nu}$ has dimensions of surface brightness What does it represent physically?

consider the case where the *same* matter is responsible for both emission and absorption; then:

- $\alpha_{\nu} = n\sigma_{\nu}$, with *n* the particle number density
- $j_{\nu} = n dL_{\nu}/d\Omega$, with $dL_{\nu}/d\Omega$ the specific power emitted *per particle* and per solid angle and thus we have

$$S_{\nu} = \frac{dL_{\nu}/d\Omega}{\sigma_{\nu}} \tag{17}$$

specific power per unit effective area and solid angle \rightarrow effective surface brightness of each particle!

11

spoiler alert: S_{ν} encodes emission vs absorption relation ultimately set by quantum mechanical symmetries e.g., time reversal invariance, "detailed balance"

Radiative Transfer Equation: Formal Solution

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{18}$$

If emission independent of I_{ν} (not always true! Q: why?) Then can formally solve

Write $I_{\nu} = \Phi_{\nu} e^{-\tau_{\nu}}$, i.e., use *integrating factor* $e^{-\tau_{\nu}}$, so

$$\frac{d(\Phi_{\nu}e^{-\tau_{\nu}})}{d\tau_{\nu}} = e^{-\tau_{\nu}}\frac{d\Phi_{\nu}}{d\tau_{\nu}} - \Phi_{\nu}e^{-\tau_{\nu}}$$
(19)

$$= -\Phi_{\nu}e^{-\tau_{\nu}} + S_{\nu}$$
 (20)

and so we have

$$\frac{d\Phi_{\nu}}{d\tau_{\nu}} = e^{+\tau_{\nu}} S_{\nu}(\tau_{\nu}) \tag{21}$$

and thus

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}} e^{\tau_{\nu}'} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'$$
(22)

12

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}(s)} e^{\tau'_{\nu}} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$$
(23)

and then

$$I_{\nu}(s) = \Phi_{\nu}(s) e^{-\tau_{\nu}(s)}$$
(24)
= $I_{\nu}(0) e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau'_{\nu}]} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$ (25)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(\tau_{\nu}') ds'$$

Q: what strikes you about these solutions? $\vec{\omega}$

Formal solution to transfer equation:

$$I_{\nu}(s) = I_{\nu}(0) \ e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} \ S_{\nu}(\tau_{\nu}') \ d\tau_{\nu}'$$
(26)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(s') ds'$$

• first term:

initial intensity degraded by absorption

• second term:

added intensity depends on sources along column but optical depth weights against sources with $au_
u\gtrsim 1$

14

Formal Solution: Special Cases

For spatially *constant* source function $S_{\nu} = j_{\nu}/\alpha_{\nu}$:

$$I_{\nu}(s) = e^{-\tau_{\nu}(s)}I_{\nu}(0) + S_{\nu}\int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} d\tau_{\nu}' \qquad (27)$$
$$= e^{-\tau_{\nu}(s)}I_{\nu}(0) + (1 - e^{-\tau_{\nu}(s)}) S_{\nu} \qquad (28)$$

- optically thin: $\tau_{\nu} \ll 1$ $I_{\nu} \approx (1 - \tau_{\nu})I_{\nu}(0) + \tau_{\nu}S_{\nu}$
- optically thick: $au_{
 u} \gg 1$ $I_{
 u} \rightarrow S_{
 u}$

 \Rightarrow optically thick intensity is source function!

what's going on? rewrite:

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{mfp,\nu}} (I_{\nu} - S_{\nu})$$
(29)

15

Q: what happens if $I_{\nu} < S_{\nu}$? if $I_{\nu} > S_{\nu}$? Q: lesson? characteristic scales?

Radiation Transfer as Relaxation

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{mfp,\nu}} (I_{\nu} - S_{\nu})$$
(30)

- if $I_{\nu} < S_{\nu}$, then $dI_{\nu}/ds > 0$: \rightarrow intensity *increases* along path
- if $I_{\nu} > S_{\nu}$, intensity *decreases*

```
equation is "self regulating!" I_{\nu} "relaxes" to "attractor" S_{\nu}
```

16

and characteristic lengthscale for relaxation is mean free path! recall $S_{\nu} = \ell_{mfp,\nu} j_{\nu}$: this is "source-only" result for sightline pathlength $s = \ell_{mfp,\nu}$

Blackbody Radiation

Radiation and Thermodynamics

consider an enclosure ("box 1") in thermodynamic equilibrium at temperature T

the matter in box 1

- is in random thermal motion
- will absorb and emit radiation details of which depends on the details of box material and geometry
- but equilibrium
 - \rightarrow radiation field in box doesn't change

open little hole: escaping radiation has intensity $I_{\nu,1}$

18

now add another enclosure ("box 2"), also at temperature T but made of *different material*

separate boxes by *filter passing only frequency* ν radiation from each box incident on screen

 $\stackrel{to}{\circ}$ Q: imagine $I_{\nu,1} > I_{\nu,2}$; what happens? Q: lesson?

Blackbody Radiation

if both boxes at same $T \Rightarrow$ no net energy transfer but this requires $I_{\nu,1} = I_{\nu,2}$ and so the radiation is:

- independent of the composition of the box
- a universal function of T
- blackbody radiation with intensity $I_{\nu}^{\text{blackbody}} \equiv B_{\nu}(T)$

Spoiler alert (useful for PS1): blackbody radiation

$$B_{\nu}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(31)

with h = Planck's constant, k = Boltzmann's constant

in wavelength space

$$B_{\lambda}(T) = 2hc^2 \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1}$$
(32)

20

blackbody integrated intensity:

$$B(T) = \int B_{\nu}(T) \, d\nu = \int B_{\lambda}(T) \, d\lambda \tag{33}$$

$$= \frac{2\pi^4}{15} \frac{k^4 T^4}{c^3 h^3} = \frac{\sigma_{\text{SB}}}{\pi} T^4 = \frac{c}{4\pi} a T^4$$
(34)

blackbody flux

$$F_{\nu}(T) = \pi B_{\nu}(T) = \frac{2\pi h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(35)

$$F(T) = \pi B(T) \equiv \sigma_{\text{SB}} T^4 = \frac{2\pi^5 k^4 T^4}{15 c^2 h^3}$$
(36)

defines Stefan-Boltzmann constant

$$\sigma_{\text{SB}} = \frac{2\pi^5}{15} \frac{k^4}{c^2 h^3} = 5.670 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ K}^{-4}$$
(37)

21

Q: to order of magnitude: integrated number density?

Note: *blackbody quantities determined entirely by T* no adjustable parameters!

mean number density: dimensions $[n] = [\text{length}^{-3}]$ can only depend on T, and physical constants h, c, kcan form only one length: [hc/kT] = [length] $\rightarrow \text{expect } n \sim (hc/kT)^3$

photon number density

22

$$n_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{hc\nu} = \frac{8\pi}{c^3} \frac{\nu^2}{e^{h\nu/kT} - 1}$$
(38)
$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3$$
(39)
where $\zeta(3) = 1 + 1/2^3 + 1/3^3 + 1/4^3 + \dots = 1.2020569\dots$

Q: implications–what does and doesn't n depend on?

blackbody photon number density

$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3 \tag{40}$$

i.e., $n \propto T^3$

So if temperatures changes, photon number changes blackbody photon number is not conserved photons massless \rightarrow can always make more!

if heat up, photon number increases and spectrum relaxes to blackbody form

blackbody energy density?

 $\overset{\text{N}}{\underset{}}$ to order of magnitude, expect $u \sim nkT \sim (kT)^4/(hc)^3$

integrated energy density

$$u_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{c} = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(41)
$$4\pi B(T) = \frac{8\pi^5 k^4 T^4}{8\pi^5 k^4 T^4}$$
(41)

$$u(T) = \frac{4\pi D(T)}{c} = \frac{6\pi}{15} \frac{\pi}{c^3 h^3}$$
(42)

$$\equiv aT^4 = \frac{40 \,\text{SB}}{c}T^4 \tag{43}$$

defines Stefan-Boltzmann radiation density constant $a = 4\sigma_{SB}/c$

mean photon energy: only one way to form an energy \rightarrow expect $\langle E\rangle \sim kT$

exact result:

$$\langle E \rangle \equiv \frac{u(T)}{n(T)}$$

$$= \frac{\pi^4}{30\zeta(3)} kT = 2.701 \, kT$$

$$(44)$$

24

Director's Cut Extras

Optical Depth and Mean Free Path

Average optical depth is

$$\langle \tau_{\nu} \rangle = \frac{\int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}}{\int e^{-\tau_{\nu}} d\tau_{\nu}} = 1$$

for constant density n_a , this occurs at the **mean free path**

$$\ell_{\mathrm{mfp},\nu} = \frac{1}{n_{\mathrm{a}} \sigma_{\nu}}$$

average distance between collisions

similarly mean free time between collisions

$$\tau_{\nu} = \frac{\ell_{\mathsf{mfp},\nu}}{c}$$

(46)

26

where we used v = c for all photons

Radiative Forces

generalize our definition of flux: energy flux in direction \hat{n} is

$$\vec{F}_{\nu} = \int I_{\nu} \ \hat{n} \ d\Omega \tag{47}$$

recovers old result if we take $\hat{z} \cdot \vec{F}_{\nu}$

each photon has momentum E/c, and so momentum per unit area and pathlength absorbed by medium with absorption coefficient α_{ν} :

$$\vec{\mathcal{F}} = \frac{d\vec{p}}{dt \ dA \ ds} = \frac{1}{c} \int \alpha_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{48}$$

but $dA \ ds = dV$, and $d\vec{p}/dt$ is force,

 $\stackrel{\scriptscriptstyle \mathrm{N}}{\lnot}$ so $\vec{\mathcal{F}}$ is the **force density**

i.e., force per unit volume, on absorbing matter

force per unit mass is

$$\vec{f} = \frac{\vec{\mathcal{F}}}{\rho} = \frac{1}{c} \int \kappa_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{49}$$

Note: we have accounted only force due to *absorption* of radiation

What about *emission*?

If emission is isotropic, no net force if not, must include this as a separate term