Astronomy 501: Radiative Processes Lecture 5 Sept 7, 2018

Announcements:

- Problem Set 1 due now
- Problem Set 2 out, due next Friday

Last time: the mighty equation of radiation transfer *Q*: what is it?

- *Q*: what is optical depth? column density? physical significance?
- *Q*: what is source function? why is it important?

Н

equation of radiation transfer

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} = -\alpha_{\nu}(I_{\nu} - S_{\nu})$$
$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

where source function set by emission and absorption properties

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = j_{\nu} \ell_{\mathsf{mfp},\nu} \tag{1}$$

and optical depth/thickness $d\tau_{\nu} = \alpha_{\nu} ds$, so that

$$\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu} \, ds = \int_{s_0}^{s} \frac{ds}{\ell_{\mathsf{mfp},\nu}} = \sigma_{\nu} \, N_{\mathsf{a}} \tag{2}$$

with column density

$$N_{\mathsf{a}} = \int_{s_0}^{s} n_{\mathsf{a}} \, ds \tag{3}$$

Ν

Q: optically thin-physical meaning? what see? what learn? everyday examples?

An Optically Thin Source

- • $\tau_{\nu} \ll 1$: optically thin = transparent
- consider thin foreground source j_{ν} illuminated by background $I_{\nu}(0)$

 $I_{\nu} \approx (1 - \tau_{\nu}) I_{\nu}(0) + j_{\nu} \delta s$

- physical interpretation: observed intensity combines slightly diminished background emission
 + foreground source along sightline
- sky view: foreground object with background shining through
- *all* of foreground source volume is projected on sky! useful for probing source interior and global properties

Everyday examples: air, wispy clouds, thin smoke, shallow water

Q: compare/contrast with optically thick case: physical meaning? what see? what learn?

ω

An Optical Thick Source

• $\tau_{\nu} \gg 1$: optically thick = opaque

 $I_{\nu} \to S_{\nu} = j_{\nu} \ell_{mfp,\nu}$

optically thick intensity is source function!

- sky view: source surface, if solid or outermost skin to depth ℓ_{mfp,ν}
- measure surface S_{ν}
- *no information* about interior or background

Everyday examples: most solid objects, deep/muddy water

^{*} Note: α_{ν} and thus τ_{ν} spectral dependence can mean the same object can be thin at some ν and thick at others!

Optical Depth and Astrophysical Objects

Q: examples of resolved optically thick astronomical objects?

Q: examples of resolved optically thin astronomical objects?

Q: Observe and interpret:

- www: supernova remnants in optical
- www: Orion nebula in optical
- www: multiwavelength dark cloud Barnard 68
- www: galaxies
- www: all sky: optical, microwave, near infrared

С

Gossip Break: Chandra Story

Blackbody Radiation

Universality of Blackbody Radiation

From last time, experiment: two boxes each in thermodynamic equilibrium at T

separate boxes by *filter passing only frequency* ν radiation from each box incident on screen

if both boxes at same $T \Rightarrow$ no net energy transfer

but this requires $I_{\nu,1} = I_{\nu,2}$ and so the radiation is:

- independent of the composition of the box
- \bullet a universal function of T
- blackbody radiation with intensity $I_{\nu}^{\text{blackbody}} \equiv B_{\nu}(T)$
- ^{∞} Lesson: radiation has energy, exchanges it with environment \rightarrow radiation can be treated thermodynamically

Thermodynamics Recap

First Law of Thermodynamics: heat is work! adding *heat energy* dQ to system changes system *energy* U and/or *pressure* P:

$$dQ = dU + pdV \tag{4}$$

Second Law of Thermodynamics: heat is entropy!

$$T \ dS = dQ \tag{5}$$

together

$$T \ dS = dU + P \ dV \tag{6}$$

and thus entropy S = S(T, V) obeys

9

$$dS = \frac{dU}{T} + \frac{P}{T}dV \tag{7}$$

entropy S = S(T, V) obeys

$$dS = \frac{dU}{T} + \frac{P}{T}dV \tag{8}$$

and thus we have

$$\partial_T S = \frac{\partial_T U}{T} \tag{9}$$

$$\partial_V S = \frac{\partial_V U + P}{T} \tag{10}$$

which means

$$\partial_V \partial_T S = \frac{\partial_V \partial_T U}{T} \tag{11}$$

$$\partial_T \partial_V S = \frac{\partial_T \partial_V U}{T} - \frac{\partial_V U}{T^2} + \partial_T \left(\frac{P}{T}\right)$$
 (12)

but mix partial derivatives equal, e.g., $\partial_V \partial_T S = \partial_T \partial_V S$, and note that $\partial_V U|_T = u$ energy density, so

$$u = T^2 \ \partial_T \left(\frac{P}{T}\right) \tag{13}$$

10

Radiation Thermodynamics

general thermodynamic considerations give:

$$u = T^2 \ \partial_T \left(\frac{P}{T}\right) \tag{14}$$

now specialize to radiation: P = P(T) = u(T)/3

$$T\frac{d}{dT}\left(\frac{u}{T}\right) = 3\frac{u}{T} \tag{15}$$

which gives

$$\frac{d(u/T)}{u/T} = 3 \frac{dT}{T}$$
(16)

$$\ln\left(\frac{u}{T}\right) = 3\ln(T) + \ln(a) \tag{17}$$

$$u(T) = a T^4 \tag{18}$$

11

This is Huge! *Q: why?*

radiation energy density gotten just from theromdynamic considerations

$$u(T) = a T^4 \tag{19}$$

- $u(T) \propto T^4$: strong T dependence!
- also get total intensity and flux!

$$B(T) = \frac{ac}{4\pi} T^{4}$$
(20)

$$F(T) = \pi B(T) = \frac{ac}{4} T^{4}$$
(21)

• where *a* is the "radiation constant" value not determined by thermodynamics alone

Note: blackbody quantities fixed entirely by Tno adjustable parameters!

Radiation Entropy

Using $U = aT^4V$ and P = u/3, can solve for radiation entropy

$$S_{\rm rad} = \frac{4}{3}aT^3 \ V \tag{22}$$

and thus entropy density $s_{rad}(T) = S/V = 4/3 aT^3$

if entropy S_{rad} constant in a parcel of radiation \rightarrow *adiabatic* process:

$$T_{\text{adiabat}} \propto V^{-1/3}$$
 (23)
 $P_{\text{adiabat}} \propto T_{\text{adiabat}}^4 \propto V^{-4/3}$ (24)

writing $P \propto V^{-\gamma}$, we have an *adiabatic index* $\gamma_{rad} = 4/3$

13

Q: but how do we get the radiation constant a?

The Quantum Mechanics of Blackbody Radiation

to have deeper understanding of radiation thermodynamics and to find radiation constant aneed to study radiation in more detail \rightarrow need physical picture of radiation

can try classical description: radiation as EM waves different frequencies ("modes") all thermally excited \rightarrow gives somewhat wrong answers, e.g., $u(T) = 8\pi kT/c^3 \int_0^\infty \nu^2 d\nu \rightarrow \infty$ "ultraviolet catastrophe"

Historically, this disaster drove Planck & Einstein to a new *microscopic* picture of quanta: **photons**

 \Rightarrow of course this gives correct blackbody description in a *statistical mechanics* description of photons