
Astronomy 501: Radiative Processes

Lecture 6

Sept 10, 2018

Announcements:

• Problem Set 2 due at start of class Friday

3(e) hint: for c a constant,
∫

x
√

x2 − c2 dx = 1
3(x

2 − c2)3/2

Last time:

• optical thickness and observations

Q: what do/don’t we learn from optically thin image?

one last example www: SN1987A

• radiation thermodynamics

Q: blackbody integrated energy density u(T)?1



Statistical Mechanics in a Nutshell

classically, phase space (~x, ~p)

completely describes particle state

Q: phase space lifestyle of single classical 1-D free body?

of single 1-D harmonic oscillator?

Q: a swarm of free bodies? oscillators?

but quantum mechanics → uncertainty ∆x∆p ≥ h̄/2

semi-classically:

can show that a quantum particle must occupy

a minimum phase space “volume”

(dx dpx)(dy dpy)(dz dpz) = h3 = (2πh̄)3

per quantum state of fixed ~p
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Distribution Function

define “occupation number” or “distribution function” f(~x, ~p):

number of particles in each phase space “cell”

Q: f range for fermions? bosons?

Q: what is f for one classical particle? many classical particles?

Given distribution function, total number of particles is

dN = gf(~x, ~p)
d3~x d3~p

h3
(1)

where g is # internal states: spin/helicity, excitation

Q: g(e−)? g(γ)? g(p)?

particle phase space occupation f determines bulk properties

Q: how? Hint–what’s # particles per unit spatial volume?
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Fermions: 0 ≤ f ≤ 1 (Pauli)

Bosons: f ≥ 0 g(e−) = 2s(e−) + 1 = 2 electron, same for p

g(γ) = 2 (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

n(~x) =
d3N

d3x
=

g

h3

∫

d3~p f(~p, ~x) (2)

Q: this expressions is general–specialize to photons?
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for photons E = cp = hν

so d3p = p2 dp dΩ = h3/c3 ν2 dν dΩ

photon number density is thus

dn =
2

c3
ν2 f(ν) dν dΩ (3)

and thus we have

dnν

dΩ
=

dn

dν dΩ
=

2

c3
ν2 f(ν) (4)

thus f gives a general, fundamental description of photon fields

the challenge is to find the physics that determines f

→ spoiler alert: you have already seen a version of it!

but will see it again as the Boltzmann equation!

Note: distribution function f(ν) and specific intensity Iν

are equivalent and interchangeable descriptions

Q: why? how do we get Iν from f(ν)?
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Distribution Function and Observables

distribution function f(ν) is related to photon number via

dnν

dΩ
=

dN

dV dν dΩ
=

2

c3
ν2 f(ν) (5)

but we found that photon specific intensity is related to

specific number density via

Iν = c hν
dnν

dΩ
(6)

but this means that the two are related via

Iν =
2h

c2
ν3 f(ν) (7)
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Equilibrium Occupation Numbers

So far, totally general description of photon fields

no assumption of thermodynamic equilibrium

in thermodynamical equilibrium at T , the distribution function

is also the occupation number

i.e., average number of photons with freq ν

f(ν, T) =
1

ehν/kT − 1
(8)

see derivation in today’s Director’s Cut Extras

Q: at fixed T , for which ν is f large? small?

Q: sketch of f(ν)?

Q: what does this all mean physically?

Q: when is f zero?

Q: in which regime do we expect classical behavior? quantum?
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Blackbody Radiation Properties

Using the blackbody distribution function, we define

Bν(T) ≡ Iν(T) =
2h

c2
ν3 f(ν, T) (9)

and because f(ν, T) = 1/(ehν/kT − 1), we have

Bν(T) =
2h

c2
ν3

ehν/kT − 1
(10)

with h = Planck’s constant, k = Boltzmann’s constant

in wavelength space

Bλ(T) = 2hc2
λ−5

ehc/λkT − 1
(11)
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blackbody integrated intensity:

B(T) =

∫

Bν(T) dν =

∫

Bλ(T) dλ (12)

=
2π4

15

k4T4

c3h3
=

σ

π
T4 =

c

4π
aT4 (13)

blackbody flux

Fν(T) = πBν(T) =
2πh

c2
ν3

ehν/kT − 1
(14)

F(T) = πB(T) ≡ σT4 =
2π5

15

k4T4

c2h3
(15)

defines Stefan-Boltzmann constant

σ =
2π5

15

k4

c2h3
= 5.670 × 10−5 erg cm−2 s−1 K−4 (16)
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integrated energy density

uν(T) =
4πBν(T)

c
=

8πh

c3
ν3

ehν/kT − 1
(17)

u(T) =
4πB(T)

c
=

8π5

15

k4T4

c3h3
(18)

≡ aT4 =
4σ

c
T4 (19)

Stefan-Boltzmann radiation density constant

a =
4σ

c
= 7.56 × 10−15 erg cm−3 K−4 (20)

at last!

Q: to order of magnitude: integrated number density?1
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mean number density: dimensions [n] = [length−3]

can only depend on T , and physical constants h, c, k

can form only one length: [hc/kT ] = [length]

→ expect n ∼ (hc/kT)3

photon number density

nν(T) =
4πBν(T)

hcν
=

8π

c3
ν2

ehν/kT − 1
(21)

n(T) = 16πζ(3)

(

kT

hc

)3

(22)

where ζ(3) = 1 + 1/23 + 1/33 + 1/43 + · · · = 1.2020569 . . .

Q: implications?

1
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blackbody photon number density

n(T) = 16πζ(3)

(

kT

hc

)3

(23)

i.e., n ∝ T3

So if temperatures changes, photon number changes

blackbody photon number is not conserved

photons massless → can always make more!

if heat up, photon number increases

and spectrum relaxes to blackbody form

alternatively: given energy density u ∼ T4

and mean photon energy 〈E〉 ∼ kT

number density must be n ∼ T3

1
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Blackbody Spectral Properties
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plots of Bν vs ν Q: what strikes you?
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Blackbody Spectral Properties

at fixed ν, occupation number ∂Tf(ν, T) > 0

→ more photons, larger f for larger T

→ more specific intensity, flux, energy density, at larger T

→ slogan: “blackbody spectra at different T never cross”

natural energy scale kT , sets two limits

Rayleigh-Jeans limit hν ≪ kT

occupation number f(ν) → kT/hν ≫ 1

many photons, expect classical behavior

specific intensity Iν = 2h/c2 ν3f → 2kT ν2/c2

• Iν ∝ ν2: power-law scaling

• h does not appear in Iν: classical behavior!
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Blackbody Radiation:  Linear Scale

Wien limit hν ≫ kT

occupation number f(ν) → e−hν/kT ≪ 1

photon starved: thermal bath cannot “pay energy cost”

specific intensity Iν → 2h ν3/c2 e−hν/kT

• exponentially damped due to quantum effects

1
6



Director’s Cut Extras

1
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Blackbody Photon Occupation Number

at a fixed temperature T and frequency ν

we want the distribution function f , i.e., the occupation number

i.e., the average number of photons with frequency ν

Boltzmann: probability of having state n of energy En

proportional to pn = e−En/kT

Planck: n photons have En = n hν, so pn = e−nx

with x = hν/kT

So average number is

f = 〈n〉 =

∑

n npn
∑

n pn
=

∑

n ne−nx

∑

n e−nx
(24)

1
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note that
∑

n ne−nx = −∂x
∑

n e−nx, so

f = −∂x ln

(

∑

n
e−nx

)

(25)

but geometric series has sum

∑

n
e−nx =

∑

n
(e−x)n =

1

1 − e−x
(26)

and thus

f = −∂x ln
1

1 − e−x
= ∂x ln(1 − e−x) (27)

=
e−x

1 − e−x
(28)

which gives

f(ν, T) =
1

ehν/kT − 1
(29)

which was to be shewn

1
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Average Energy per Blackbody Photon

only one way to form an energy

→ expect 〈E〉 ∼ kT ; exact result:

〈E〉 ≡
u(T)

n(T)
(30)

=
π4

30ζ(3)
kT = 2.701 kT (31)

c.f. nonrelativistic ideal gas: 〈E〉idealgas = 3/2kT

note: blackbody radiation has

P

n kT
=

〈E〉

3
= 0.900 (32)

c.f. nonrelativistic ideal gas: Pidealgas/nidealgaskT = 1

2
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Average Entropy per Blackbody Photon

mean entropy per photon:

entropy has units of Boltzmann’s k

→ expect 〈S〉 ∼ k; exact result

〈S〉 =
s(T)

n(T)
=

4u(T)/3T

n(T)
=

4

3

〈E〉

T
= 3.601 k (33)

temperature independent!

c.f. nonrelativistic ideal gas: entropy per particle

given by Sackur-Tetrode equation

sidealgas

nidealgas
= k

[

5

2
− ln

(

n

(2πmkT/h)3/2

)]

(34)

nearly constant, but through logarithm term

weakly depends on T and density n
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