Astronomy 501: Radiative Processes

Lecture 6
Sept 10, 2018

Announcements:

- Problem Set 2 due at start of class Friday 3(e) hint: for c a constant, $\int x \sqrt{x^{2}-c^{2}} d x=\frac{1}{3}\left(x^{2}-c^{2}\right)^{3 / 2}$

Last time:

- optical thickness and observations

Q: what do/don't we learn from optically thin image? one last example www: SN1987A

- radiation thermodynamics

Q: blackbody integrated energy density $u(T)$?

Statistical Mechanics in a Nutshell

classically, phase space (\vec{x}, \vec{p})
completely describes particle state

Q: phase space lifestyle of single classical 1-D free body? of single 1-D harmonic oscillator?
Q: a swarm of free bodies? oscillators?
but quantum mechanics \rightarrow uncertainty $\Delta x \Delta p \geq \hbar / 2$
semi-classically:
can show that a quantum particle must occupy
a minimum phase space "volume"
$\sim\left(d x d p_{x}\right)\left(d y d p_{y}\right)\left(d z d p_{z}\right)=h^{3}=(2 \pi \hbar)^{3}$
per quantum state of fixed \vec{p}

Distribution Function

define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$: number of particles in each phase space "cell"
Q: f range for fermions? bosons?
Q : what is f for one classical particle? many classical particles?

Given distribution function, total number of particles is

$$
\begin{equation*}
d N=g f(\vec{x}, \vec{p}) \frac{d^{3} \vec{x} d^{3} \vec{p}}{h^{3}} \tag{1}
\end{equation*}
$$

where g is \# internal states: spin/helicity, excitation Q: $g\left(e^{-}\right) ? g(\gamma) ? g(p)$?
ω particle phase space occupation f determines bulk properties Q: how? Hint-what's \# particles per unit spatial volume?

Fermions: $0 \leq f \leq 1$ (Pauli)
Bosons: $f \geq 0 g\left(e^{-}\right)=2 s\left(e^{-}\right)+1=2$ electron, same for p $g(\gamma)=2$ (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

$$
\begin{equation*}
n(\vec{x})=\frac{d^{3} N}{d^{3} x}=\frac{g}{h^{3}} \int d^{3} \vec{p} f(\vec{p}, \vec{x}) \tag{2}
\end{equation*}
$$

Q: this expressions is general-specialize to photons?
for photons $E=c p=h \nu$
so $d^{3} p=p^{2} d p d \Omega=h^{3} / c^{3} \nu^{2} d \nu d \Omega$
photon number density is thus

$$
\begin{equation*}
d n=\frac{2}{c^{3}} \nu^{2} f(\nu) d \nu d \Omega \tag{3}
\end{equation*}
$$

and thus we have

$$
\begin{equation*}
\frac{d n_{\nu}}{d \Omega}=\frac{d n}{d \nu d \Omega}=\frac{2}{c^{3}} \nu^{2} f(\nu) \tag{4}
\end{equation*}
$$

thus f gives a general, fundamental description of photon fields the challenge is to find the physics that determines f
\rightarrow spoiler alert: you have already seen a version of it!
but will see it again as the Boltzmann equation!
Note: distribution function $f(\nu)$ and specific intensity I_{ν}
are equivalent and interchangeable descriptions
Q : why? how do we get I_{ν} from $f(\nu)$?

Distribution Function and Observables

distribution function $f(\nu)$ is related to photon number via

$$
\begin{equation*}
\frac{d n_{\nu}}{d \Omega}=\frac{d N}{d V d \nu d \Omega}=\frac{2}{c^{3}} \nu^{2} f(\nu) \tag{5}
\end{equation*}
$$

but we found that photon specific intensity is related to specific number density via

$$
\begin{equation*}
I_{\nu}=c h \nu \frac{d n_{\nu}}{d \Omega} \tag{6}
\end{equation*}
$$

but this means that the two are related via

$$
\begin{equation*}
I_{\nu}=\frac{2 h}{c^{2}} \nu^{3} f(\nu) \tag{7}
\end{equation*}
$$

Equilibrium Occupation Numbers

So far, totally general description of photon fields no assumption of thermodynamic equilibrium
in thermodynamical equilibrium at T, the distribution function is also the occupation number
i.e., average number of photons with freq ν

$$
\begin{equation*}
f(\nu, T)=\frac{1}{e^{h \nu / k T}-1} \tag{8}
\end{equation*}
$$

see derivation in today's Director's Cut Extras
Q: at fixed T, for which ν is f large? small?
Q: sketch of $f(\nu)$?
Q: what does this all mean physically?
Q : when is f zero?
Q : in which regime do we expect classical behavior? quantum?

Blackbody Radiation Properties

Using the blackbody distribution function, we define

$$
\begin{equation*}
B_{\nu}(T) \equiv I_{\nu}(T)=\frac{2 h}{c^{2}} \nu^{3} f(\nu, T) \tag{9}
\end{equation*}
$$

and because $f(\nu, T)=1 /\left(e^{h \nu / k T}-1\right)$, we have

$$
\begin{equation*}
B_{\nu}(T)=\frac{2 h}{c^{2}} \frac{\nu^{3}}{e^{h \nu / k T}-1} \tag{10}
\end{equation*}
$$

with $h=$ Planck's constant, $k=$ Boltzmann's constant
in wavelength space

$$
\begin{equation*}
B_{\lambda}(T)=2 h c^{2} \frac{\lambda^{-5}}{e^{h c / \lambda k T}-1} \tag{11}
\end{equation*}
$$

blackbody integrated intensity:

$$
\begin{align*}
B(T) & =\int B_{\nu}(T) d \nu=\int B_{\lambda}(T) d \lambda \tag{12}\\
& =\frac{2 \pi^{4} k^{4} T^{4}}{15} \frac{\sigma}{c^{3} h^{3}}=\frac{\sigma}{\pi} T^{4}=\frac{c}{4 \pi} a T^{4} \tag{13}
\end{align*}
$$

blackbody flux

$$
\begin{align*}
F_{\nu}(T) & =\pi B_{\nu}(T)=\frac{2 \pi h}{c^{2}} \frac{\nu^{3}}{e^{h \nu / k T}-1} \tag{14}\\
F(T) & =\pi B(T) \equiv \sigma T^{4}=\frac{2 \pi^{5}}{15} \frac{k^{4} T^{4}}{c^{2} h^{3}} \tag{15}
\end{align*}
$$

defines Stefan-Boltzmann constant

$$
\begin{equation*}
\sigma=\frac{2 \pi^{5}}{15} \frac{k^{4}}{c^{2} h^{3}}=5.670 \times 10^{-5} \text { erg } \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4} \tag{16}
\end{equation*}
$$

integrated energy density

$$
\begin{align*}
u_{\nu}(T) & =\frac{4 \pi B_{\nu}(T)}{c}=\frac{8 \pi h}{c^{3}} \frac{\nu^{3}}{e^{h \nu / k T}-1} \tag{17}\\
u(T) & =\frac{4 \pi B(T)}{c}=\frac{8 \pi^{5}}{15} \frac{k^{4} T^{4}}{c^{3} h^{3}} \tag{18}\\
& \equiv a T^{4}=\frac{4 \sigma}{c} T^{4} \tag{19}
\end{align*}
$$

Stefan-Boltzmann radiation density constant

$$
\begin{equation*}
a=\frac{4 \sigma}{c}=7.56 \times 10^{-15} \text { erg } \mathrm{cm}^{-3} \mathrm{~K}^{-4} \tag{20}
\end{equation*}
$$

at last!
\lrcorner Q: to order of magnitude: integrated number density?
mean number density: dimensions $[n]=\left[\right.$ length $\left.{ }^{-3}\right]$
can only depend on T, and physical constants h, c, k
can form only one length: $[h c / k T]=[$ length $]$
\rightarrow expect $n \sim(h c / k T)^{3}$
photon number density

$$
\begin{align*}
n_{\nu}(T) & =\frac{4 \pi B_{\nu}(T)}{h c \nu}=\frac{8 \pi}{c^{3}} \frac{\nu^{2}}{e^{h \nu / k T}-1} \tag{21}\\
n(T) & =16 \pi \zeta(3)\left(\frac{k T}{h c}\right)^{3} \tag{22}
\end{align*}
$$

where $\zeta(3)=1+1 / 2^{3}+1 / 3^{3}+1 / 4^{3}+\cdots=1.2020569 \ldots$
Q : implications?
blackbody photon number density

$$
\begin{equation*}
n(T)=16 \pi \zeta(3)\left(\frac{k T}{h c}\right)^{3} \tag{23}
\end{equation*}
$$

i.e., $n \propto T^{3}$

So if temperatures changes, photon number changes
blackbody photon number is not conserved photons massless \rightarrow can always make more!
if heat up, photon number increases and spectrum relaxes to blackbody form
alternatively: given energy density $u \sim T^{4}$
$\stackrel{\rightharpoonup}{\omega}$ and mean photon energy $\langle E\rangle \sim k T$
number density must be $n \sim T^{3}$

Blackbody Spectral Properties

ャ
plots of B_{ν} vs $\nu \quad Q:$ what strikes you?

Blackbody Spectral Properties

at fixed ν, occupation number $\partial_{T} f(\nu, T)>0$
\rightarrow more photons, larger f for larger T
\rightarrow more specific intensity, flux, energy density, at larger T
\rightarrow slogan: "blackbody spectra at different T never cross"
natural energy scale $k T$, sets two limits

Rayleigh-Jeans limit $h \nu \ll k T$
occupation number $f(\nu) \rightarrow k T / h \nu \gg 1$
many photons, expect classical behavior
specific intensity $I_{\nu}=2 h / c^{2} \nu^{3} f \rightarrow 2 k T \nu^{2} / c^{2}$

- $I_{\nu} \propto \nu^{2}$: power-law scaling
- h does not appear in I_{ν} : classical behavior!

Wien limit $h \nu \gg k T$
occupation number $f(\nu) \rightarrow e^{-h \nu / k T} \ll 1$ photon starved: thermal bath cannot "pay energy cost"
↔ specific intensity $I_{\nu} \rightarrow 2 h \nu^{3} / c^{2} e^{-h \nu / k T}$

- exponentially damped due to quantum effects

Director's Cut Extras

Blackbody Photon Occupation Number

at a fixed temperature T and frequency ν
we want the distribution function f, i.e., the occupation number i.e., the average number of photons with frequency ν

Boltzmann: probability of having state n of energy E_{n} proportional to $p_{n}=e^{-E_{n} / k T}$

Planck: n photons have $E_{n}=n h \nu$, so $p_{n}=e^{-n x}$ with $x=h \nu / k T$

So average number is

$$
\begin{equation*}
f=\langle n\rangle=\frac{\sum_{n} n p_{n}}{\sum_{n} p_{n}}=\frac{\sum_{n} n e^{-n x}}{\sum_{n} e^{-n x}} \tag{24}
\end{equation*}
$$

note that $\sum_{n} n e^{-n x}=-\partial_{x} \sum_{n} e^{-n x}$, so

$$
\begin{equation*}
f=-\partial_{x} \ln \left(\sum_{n} e^{-n x}\right) \tag{25}
\end{equation*}
$$

but geometric series has sum

$$
\begin{equation*}
\sum_{n} e^{-n x}=\sum_{n}\left(e^{-x}\right)^{n}=\frac{1}{1-e^{-x}} \tag{26}
\end{equation*}
$$

and thus

$$
\begin{align*}
f & =-\partial_{x} \ln \frac{1}{1-e^{-x}}=\partial_{x} \ln \left(1-e^{-x}\right) \tag{27}\\
& =\frac{e^{-x}}{1-e^{-x}} \tag{28}
\end{align*}
$$

which gives

$$
\begin{equation*}
f(\nu, T)=\frac{1}{e^{h \nu / k T}-1} \tag{29}
\end{equation*}
$$

which was to be shewn

Average Energy per Blackbody Photon

only one way to form an energy
\rightarrow expect $\langle E\rangle \sim k T$; exact result:

$$
\begin{align*}
\langle E\rangle & \equiv \frac{u(T)}{n(T)} \tag{30}\\
& =\frac{\pi^{4}}{30 \zeta(3)} k T=2.701 k T \tag{31}
\end{align*}
$$

c.f. nonrelativistic ideal gas: $\langle E\rangle_{\text {idealgas }}=3 / 2 k T$
note: blackbody radiation has

$$
\begin{equation*}
\frac{P}{n k T}=\frac{\langle E\rangle}{3}=0.900 \tag{32}
\end{equation*}
$$

c.f. nonrelativistic ideal gas: $P_{\text {idealgas }} / n_{\text {idealgas }} k T=1$

Average Entropy per Blackbody Photon

mean entropy per photon:
entropy has units of Boltzmann's k
\rightarrow expect $\langle S\rangle \sim k$; exact result

$$
\begin{equation*}
\langle S\rangle=\frac{s(T)}{n(T)}=\frac{4 u(T) / 3 T}{n(T)}=\frac{4}{3} \frac{\langle E\rangle}{T}=3.601 k \tag{33}
\end{equation*}
$$

temperature independent!
c.f. nonrelativistic ideal gas: entropy per particle given by Sackur-Tetrode equation

$$
\begin{equation*}
\frac{s_{\text {idealgas }}}{n_{\text {idealgas }}}=k\left[\frac{5}{2}-\ln \left(\frac{n}{(2 \pi m k T / h)^{3 / 2}}\right)\right] \tag{34}
\end{equation*}
$$

$\underset{\sim}{\sim}$ nearly constant, but through logarithm term weakly depends on T and density n

