Astronomy 501: Radiative Processes Lecture 7 Sept 12, 2018

Announcements:

- Problem Set 2 due at start of class Friday 3(e) hint: for c a constant, $\int x \sqrt{x^2 - c^2} dx = \frac{1}{3}(x^2 - c^2)^{3/2}$
- Physics Colloquim today: our own Prof. Jessie Shelton "The Higgs Portal onto the Dark Universe"

Last Time:

- *Q*: blackbody B_{ν} spectrum form? characteristics?
- Q: limiting regimes?
- *Q*: B_{ν} variation with *T* at fixed ν ?
- → Q: when observing a resolved blackbody—what does B_{ν} give us? Q: compare/contrast with unresolved blackbody?

Blackbody Radiation Highlights

specific intensity: Planck function

$$B_{\nu}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$

• low frequency $h\nu \ll kT$: Raleigh-Jeans limit

$$B_{\nu} \approx \frac{2h}{c^2} \nu^2 T$$

• high frequency $h\nu \gg kT$: Wien limit

$$B_{\nu} \approx \frac{2h}{c^2} \nu^3 e^{-h\nu/kT}$$

- at each ν : B_{ν} always increases with T
- \sim blackbody intensity B_{ν} is *unique* for each T

(1)

Brightness Temperature

at each ν , blackbody $B_{\nu}(T)$ unique for each $T \rightarrow$ for resolved blackbody, measured B_{ν} gives T!

invert to define **brightness** / antenna temperature

$$B_{\nu}(T_{b}) = I_{\nu} \qquad (2)$$

$$T_{b}(\nu) = \frac{h\nu/k}{\ln\left(\frac{2h\nu^{3}}{c^{2}I_{\nu}} + 1\right)} \qquad (3)$$

$$\frac{h\nu \ll kT}{2k} \frac{c^{2}}{2k} \frac{I_{\nu}}{\nu^{2}} \qquad (4)$$

note: defined for all I_{ν} even if not blackbody! $_{\omega}$ another way of characterizing intensity

Q: why is this useful?

Q: what does it mean for a nonthermal source?

- www: famous discovery
- www: modern T_{b} results plotted

Wien's Displacement Laws

for blackbodies, specific intensity, and flux, and energy density have

$$I_{\nu} \propto F_{\nu} \propto u_{\nu} \propto \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(5)

at fixed T, these spectra all peak at same frequency

maximum when $x = h\nu/kT$ satisfies $x = 3(1 - e^{-x})$ $\rightarrow x_{\text{max}} = 2.821439...$, which gives

СЛ

$$\frac{\nu_{\text{max}}}{T} = x_{\text{max}} \frac{kT}{h} = 5.88 \times 10^{10} \text{ Hz K}^{-1}$$
(6)
i.e., $\nu_{\text{max}} \propto T$, as expected from dimensional analysis

in wavelength space, $I_\lambda \propto \lambda^{-5}/(e^{hc/\lambda kT}-1)$

maximum when $y = hc/\lambda kT$ satisfies $y = 5(1 - e^{-y})$ $\rightarrow y_{max} = 4.9651...$, which gives

$$\lambda_{\max} T = \frac{1}{y_{\max}} \frac{hc}{k} = 0.290 \text{ cm K}$$
(7)

i.e., $\lambda_{\text{max}} \propto 1/T$, as expected from dimensional analysis

both versions of Wien's Law measure T: color temperature

crucial gotcha: **beware!** $\lambda_{max} \neq c/\nu_{max}$ *Q: why?*

σ

Thermal Radiation Transfer

Consider a cavity in thermodynamic equilibrium

place *small sample of matter* in cavity

along peephole sightline note: "sample," most generally:

- *not* necessarily large
- *nor* optically thick!

~

 and might contain free ions, and/or bound states (atoms and molecules)

allow system to come into thermodynamic equilibrium at ${\cal T}$

Q: effect on I_{ν} emerging from peephole? *Q*: implications?

matter sample will emit and absorb radiation according to its detailed composition, and according to its state at T (i.e., ion, atom, molecule) \Rightarrow absorption $\alpha_{\nu}(T)$ and emission $j_{\nu}(T)$ both characteristic of the matter, not universal!

But in cavity+sample system, there is thermal equilibrium \rightarrow must still be blackbody emitter! \rightarrow emitted radiation must have $I_{\nu,\text{out}} = B_{\nu}(T)$

Yet radiation *incident* on sample in cavity already was blackbody: $I_{\nu,in} = B_{\nu}(T)$

specific intensity change through sample

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}(I_{\nu} - S_{\nu}) \tag{8}$$

Q: so what condition required for ray to maintain $I_{\nu,\text{in}} = I_{\nu,\text{out}} = B_{\nu}(T)$ through sample?

Kirchhoff's Law for Thermal Emission

blackbody radiation $B_{\nu}(T)$ must remain unchanged when traversing arbitrary matter with temperature T \Rightarrow demands that all matter at T has source function

$$S_{\nu}(T) = B_{\nu}(T) \tag{9}$$

Kirchhoff's Law for thermal emission

Physically: equilibrium forces emission-absorption relation:

$$j_{\nu} = \alpha_{\nu} \ B_{\nu}(T) \tag{10}$$

Consequences:

- a good (poor) emitter is a good (poor) absorber
- *thermal* emission has $S_{\nu} = B_{\nu}(T)$ and has

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + B_{\nu} \tag{11}$$

9

Q: so when will thermal source have blackbody spectrum?

thermal source has $S_{\nu}(T) = B_{\nu}(T)$ as seen in the PS1 Olber's problem! and so transfer equation becomes

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + B_{\nu}$$

but since $B_{\nu}(T)$ is homogeneous, isotropic if no background source, then $I_{\nu}(0) = 0$, and solution is

$$I_{\nu}(s) = \left(1 - e^{-\tau_{\nu}(s)}\right) B_{\nu}(T)$$
 (12)

- if optically thin, then observe $I_{\nu} \approx \tau_{\nu} B_{\nu}(T) = j_{\nu}(T) \Delta s$ intensity not blackbody, and depends on emitter physics www: Cas A X-ray spectrum (Chandra) Q: what is Cas A?
- if *optically thick*, then $I_{\nu} \rightarrow B_{\nu}$ as seen in PS1 intensity relaxes to emitter-independent *blackbody* radiation

Build Your Toolbox: Imaging

Questions to ask about resolved astronomical images:

Q: what does it mean to be resolved?

Q: what questions to ask?

Q: how to answer?

Toolbox: Imaging

resolved images:

- angular size > angular resolution
- surface brigtness I_{ν} observable

Questions to ask

- What wavebands are in image?
- is the source optically thin or thick at these ν ? **optically thick**: image shows surface $I_{\nu} \rightarrow S_{\nu} = j_{\nu} \ell_{mfp,\nu}$ at surface $\rightarrow B_{\nu}(T_{surf})$ if thermal equilib **optically thin**: measure volume in projection $I_{\nu} \approx j_{\nu} \ \delta s$
- $\stackrel{i}{\sim}$ Q: How to tell if optically thick/thin?

Thick or Thin?

How to tell if optically thick/thin? Non-trivial!

- use spectral info: compare image across ν does it follow blackbody?
- quantitatively: find brightness temperature $T_{\rm b}(\nu)$ over multiple ν or colors if blackbody: uniform $T_{\rm b} = T$ across colors gives thermodynamic temperature otherwise: spectrum nonthermal, not all emission optically thick

Build Your Toolbox: Blackbody Radiation

emission physics: matter-radiation interactions

- Q: physical conditions for blackbody radiation?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of blackbody radiation *Q: what do we expect to emit blackbody radiation? Q: relevant temperatures? EM bands?*

Toolbox: Blackbody Radiation

emission physics

- physical conditions: *optically thick* objects *in thermodynamic equilibrium*
- physical sources: solids, dense liquids or gasses
- spectrum: continuum. nonzero at all frequencies single peak at $h\nu = 2.82kT$ (Wien's law) power law $I_{\nu} \sim \nu^2 T$ for $h\nu \ll kT$ exponentical cutoff $I_{\nu} \sim \nu^3 e^{-h\nu/kT} h\nu \gg kT$

astrophysical sources of blackbody radiation

- emitters: solids: dust, asteroids, planets, compact objects stars, some disks, the Universe
- - EM bands: microwave to MeV (and above?)

Lines: Two-Level Systems

Two-Level Systems in Radiative Equilibrium

consider an ensemble of systems ("atoms") with

- two discrete energy levels E_1, E_2
- and degeneracies g_1, g_2
 - i.e., a number g_1 of distinct states have energy E_1

in thermodynamic equilibrium at T, emission and absorption exchange energy with photon field

- $\stackrel{i}{\neg}$ Q: when & why emit? absorb?
 - Q: connection between emission, absorption rates in ensemble?

Spontaneous Emission

in general, atoms in states with higher energy E_2 will *decay* to lower level E_1 photon of energy $\Delta E = E_2 - E_1 = h\nu_0$ will be emitted

transition can occur without influence of other atoms, photons **spontaneous emission**: $X_2 \rightarrow X_1 + h\nu$

spontaneous emission rate per atom is $E_2 \rightarrow E_1$ transition rate per atom:

transition probability per unit time per atom = A_{21} (13)

- "Einstein A" coefficient
- units $[A_{21}] = [\sec^{-1}]$

• spontaneous: A_{21} independent of T

• but A_{21} does depend on detailed atom properties

Absorption

atoms in lower state E_1 only promoted to state E_2 by absorbing a photon of energy ΔE $h\nu+X_1\to X_2$

if levels were perfectly sharp, absorb only at $\Delta E = h\nu_0$ but in general, energy levels have *finite width* i.e., *line energies "smeared out*" by some amount $h \Delta nu$ so transitions can be made by photons with frequencies $\nu_0 - \Delta \nu \lesssim \nu \lesssim \nu_0 + \Delta \nu$

useful to define line profile function $\phi(\nu)$ with normalization $\int \phi(\nu) d\nu = 1$ e.g., Gaussian, Lorentzian, Voight functions

 $\lim_{\omega} \text{ limiting case of sharp levels } \Delta \nu \to 0: \\ \phi(\nu) \to \delta(\nu - \nu_0)$

absorptions require ambient photons

thus absorption rate per atom *depends on photon field* and ensemble *average absorption rate* depends on average intensity

$$\bar{J} \equiv \int \phi(\nu) \ J_{\nu} \ d\nu \tag{14}$$

limiting case of sharp levels: $\overline{J} \rightarrow J_{\nu_0}$

thus write average absorption rate as

transition probability per time per atom $= \frac{B_{12}\bar{J}}{15}$

- "Einstein *B* coefficient"
- B_{12} is probability per time per intensity
- $\boldsymbol{\aleph}$ \bullet depends on atom and state details
 - \bullet but does not depend on T

Stimulated Emission

Einstein postulated a new emission mechanism: *driven by* photons with transition energy $\nu_0 - \Delta \nu \lesssim \nu \lesssim \nu_0 + \Delta \nu$ $h\nu + X_2 \rightarrow X_1 + 2h\nu$

I.e., the presence of transition photons creates "peer pressure" "encourages" atoms in higher state to make transition faster than they would spontaneously: **stimulated emission** plausible? yes-photons interact with and perturb atoms

if stimulated emission exists, should also depend on \overline{J} \rightarrow rate per atom is

transition probability per time per atom $= \frac{B_{21}\bar{J}}{16}$ (16)

- note stimulated emission coefficient B_{21}
- can be *different from* absorption coefficient B_{12}
- if stimulated emission doesn't happen, would find $B_{21} = 0$

The Equilibrium Condition

In thermodynamic equilibrium, the numbers n_1, n_2 of atoms in each state do not change with time \rightarrow total emission rate is equal to absorption rate

$$n_2 A_{21} + n_2 B_{21} \bar{J} = n_1 B_{12} \bar{J} \tag{17}$$

solve for ambient radiation field

$$\bar{J} = \frac{A_{21}/B_{21}}{n_1/n_2 \ B_{12}/B_{21} - 1} \tag{18}$$

in thermodynamic equilibrium, atom state populations follow *Boltzmann distribution*

$$\frac{n_1}{n_2} = \frac{g_1 e^{-E_1/kT}}{g_2 e^{-E_2/kT}} = \frac{g_1}{g_1} e^{(E_2 - E_1)/kT} = \frac{g_1}{g_1} e^{h\nu_0/kT}$$
(19)

and so

$$\bar{J} = \frac{A_{21}/B_{21}}{g_1/g_2 \ B_{12}/B_{21} \ e^{h\nu_0/kT} - 1}$$
(20)

thus we find that in equilibrium, the mean intensity near ν_0 is

$$\bar{J} = \frac{A_{21}/B_{21}}{g_1/g_2 \ B_{12}/B_{21} \ e^{h\nu_0/kT} - 1}$$
(21)

but in equilibrium, and with narrow linewidth, the mean intensity should be blackbody result:

$$\bar{J} \to B_{\nu}(T) = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1}$$
 (22)

Q: what condition(s) must hold to satisfy both equations for any T?

because A and both B do not depend on T the only way to have, at any T,

$$\bar{J} = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1} = \frac{A_{21}/B_{12}}{g_1/g_2 \ B_{12}/B_{21} \ e^{h\nu/kT} - 1}$$
(23)

is to require two *Einstein relations*

$$A_{21} = \frac{2h \nu^3}{c^2} B_{21}$$
(24)
$$g_2 B_{21} = g_1 B_{12}$$
(25)

- these relations are independent of T: hold even without thermal equilibrium!
- B₂₁ ≠ 0: spontaneous emission exists! and typically has probability comparable to absorption! give it up for Big AI!

Two-Level Systems: Thermal Radiation

Now consider the two-level atom as a radiating system What are the emission and absorption coefficients?

Emission Coefficient

spontaneous emission rate per atom in state 2: A_{21} \rightarrow rate per volume: n_2A_{21} \rightarrow total power emitted per volume: $h\nu_0 n_2A_{21}$ emission isotropic \rightarrow power per volume per solid angle: $h\nu_0 n_2A_{21}/4\pi$ Q: why?

but still need *frequency spectrum* of emitted radiation, i.e., *emission profile*

25

Q: simplest assumption?

simplest assumption (generally accurate): \rightarrow emission spectrum profile = absorption profile $\phi(\nu)$

and thus energy released in spontaneous emission is

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_2 A_{21} \phi(\nu) \ dV \ dt \ d\nu \ d\Omega \tag{26}$$

and thus the emission coefficient is

$$j_{\nu} = \frac{h\nu_0}{4\pi} n_2 A_{21} \phi(\nu) \tag{27}$$

absorption coefficient

absorption rate per atom in level 1: $B_{12}\overline{J}$ thus energy absorbed is

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_1 B_{12} \bar{J} \, dV \, dt \tag{28}$$

but $4\pi \overline{J} = \int d\Omega \int I_{\nu} \phi(\nu) \ d\nu$, so

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_1 B_{12} I_\nu \phi(\nu) \ dV \ dt \ d\Omega \ d\nu \tag{29}$$

recall: path element ds in area dA has volume dV = ds dA and so we find absorption coefficient

$$\alpha_{\text{abs},\nu} = \frac{h\nu_0}{4\pi} n_1 B_{12} \phi(\nu)$$
 (30)

27

...but we are not done! Q: because...?

stimulated emission

tempting to include this as additional emission term

but wait! stimulated emission depends on (average) intensity \rightarrow formally more similar to absorption

formally better to treat stimulated emission as a *negative absorption* term:

$$\alpha_{\text{stim},\nu} = -\frac{h\nu_0}{4\pi} n_2 B_{21} \phi(\nu) \tag{31}$$

and then (net) absorption coefficient

$$\alpha_{\nu} = \alpha_{\text{abs},\nu} + \alpha_{\text{stim},\nu} \tag{32}$$

$$= \frac{h\nu_0}{4\pi}\phi(\nu) \ (n_1B_{12} - n_2B_{21}) \tag{33}$$

Two-Level Radiation Transfer

Transfer equation for two-level atom

$$\frac{dI_{\nu}}{ds} = -\frac{h\nu_0}{4\pi}\phi(\nu) \quad (n_1B_{12} - n_2B_{21}) I_{\nu} + \frac{h\nu_0}{4\pi}n_2A_{21}\phi(\nu) \quad (34)$$
 source function

$$S_{\nu} = \frac{n_2 A_{21}}{n_1 B_{12} - n_2 B_{21}} \tag{35}$$

Einstein relations give

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - \frac{n_2 g_1}{n_1 g_2} \right)$$
(36)

$$S_{\nu} = \frac{2h\nu^3/c^2}{(n_1/n_2)(g_2/g_1) - 1}$$
(37)

a generalization of Kirchhoff's laws these *do not assume thermal equilibrium!*

Q: interesting cases?

Local Thermodynamic Equilibrium

if atom levels are in thermodynamic equilibrium then we have $n_1/n_2 = (g_1/g_2)e^{h\nu/kT}$ and

$$S_{\nu} = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1} = B_{\nu}(T)$$
(38)

we recover the usual Kirchhoff's law! as we must!

and absorption term becomes

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - e^{-h\nu/kT} \right) \tag{39}$$

i.e., "uncorrected" term minus stimulated emission correction

What if not in thermodynamic equilibrium? $\overset{\&}{}$ then $n_1/n_1 \neq$ Boltzmann expression emission is nothermal

Inverted Populations

two-level absorption coefficient is:

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - \frac{n_2 g_1}{n_1 g_2} \right) \tag{40}$$

note that the algebraic sign

ω1

depends on population levels, i.e., on n_2/n_1 normally, lower level more populated: $n_1 > n_2$

If we can arrange or stumble upon a system where

$$\frac{n_1}{g_1} < \frac{n_2}{g_2}$$
 (41)

i.e., an *inverted population*, then $\alpha_{\nu} < 0!$

Q: and then what happens to propagating light? Q: examples?

Q: how might we arrange an inverted population?

Masers

if $\alpha_{\nu} < 0$, then propagating light has exponential *increase* in intensity!

stimulated emission causes a "cascade" of photons

in lab: create inverted populations of atoms use mirrors to "recycle" stimulating photons \rightarrow this is a laser! light amplification by stimulated emission of radiation

in cosmos: inverted populations of molecules maser: microwave amplification by stimulated emission of radiation

ℵ how to create inversion? need nonthermal mechanism to "pump" upper level