Astronomy 501: Radiative Processes

$$
\begin{gathered}
\text { Lecture } 9 \\
\text { Sept } 17,2018
\end{gathered}
$$

Announcements:

- Problem Set 3 due Friday at start of class

Last time: radiative properties of a two-level system Q: emission processes? absorption? what do they depend on?

Inverted Populations

two-level absorption coefficient is:

$$
\begin{equation*}
\alpha_{\nu}=\frac{h \nu_{0}}{4 \pi} \phi(\nu) n_{1} B_{12}\left(1-\frac{n_{2}}{n_{1}} \frac{g_{1}}{g_{2}}\right) \tag{1}
\end{equation*}
$$

note that the algebraic sign
depends on population levels, i.e., on n_{2} / n_{1}
normally, lower level more populated: $n_{1}>n_{2}$
If we can arrange or stumble upon a system where

$$
\begin{equation*}
\frac{n_{1}}{g_{1}}<\frac{n_{2}}{g_{2}} \tag{2}
\end{equation*}
$$

i.e., an inverted population, then $\alpha_{\nu}<0$!

Q: and then what happens to propagating light?
Q : examples?
Q: how might we arrange an inverted population?

Masers

if $\alpha_{\nu}<0$, then propagating light has
exponential increase in intensity!
stimulated emission causes a "cascade" of photons
in lab: create inverted populations of atoms use mirrors to "recycle" stimulating photons
\rightarrow this is a laser! light amplification by stimulated emission of radiation
in cosmos: inverted populations of molecules
maser: microwave amplification by stimulated emission of radiation
${ }^{\omega}$ how to create inversion?
need nonthermal mechanism to "pump" upper level

Scattering

Pure Scattering

Consider an idealized case with radiation propagating through a medium with "pure scattering," i.e., scattering, but no emission, and no absorption

Recall: intensity in a ray is a directional quantity i.e., really $I_{\nu}=I_{\nu}(\theta, \phi)=I_{\nu}(\hat{n})$,
with \hat{n} a unit vector toward (θ, ϕ)
in general: scattering preserves photon number but redistributes both

- photon energy
- photon direction generally, scattering is different for different incident and scattered angles, i.e., anisotropic
this is generally is (very) non-trivial to calculate
but consider even more special case:
- isotropic scattering:
no preferred direction for scattered photons
- photon energy unchanged ("coherent scattering") good approximation for scattering by non-relativistic e
define scattering coefficient $\varsigma_{\nu}=n_{\mathrm{scat}} \sigma_{\mathrm{scat}, \nu}$, and thus also scattering cross section $\sigma_{\text {scat }}$, such that intensity lost to scattering out of ray is

$$
\begin{equation*}
d I_{\nu}=-\varsigma_{\nu} I_{\nu} d s \tag{3}
\end{equation*}
$$

isotropic scattering $\rightarrow \varsigma_{\nu}$ same for all directions

Q: what is intensity scattered into the ray?

Isotropic Coherent Scattering

intensity scattered out of ray $I_{\nu}(\hat{n})$ is

$$
\begin{equation*}
d I_{\nu}(\hat{n})=-\varsigma_{\nu} I_{\nu}(\hat{n}) d s \tag{4}
\end{equation*}
$$

if scattering isotropic, the portion into \hat{n} is

$$
\begin{equation*}
d I_{\nu}(\widehat{n})=\frac{d \Omega^{\prime}}{4 \pi}\left|d I_{\nu}\left(\hat{n}^{\prime}\right)\right| \tag{5}
\end{equation*}
$$

and so integrating over all possible solid $d \Omega^{\prime}$ gives

$$
\begin{equation*}
d I_{\nu}(\widehat{n})=\frac{\varsigma_{\nu}}{4 \pi} \int I_{\nu} d \Omega d s=\varsigma_{\nu} J_{\nu} d s \tag{6}
\end{equation*}
$$

where J_{ν} is the angle-averaged intensity
and thus for isotropic coherent scattering

$$
\begin{equation*}
\frac{d I_{\nu}(\widehat{n})}{d s}=-\varsigma_{\nu}\left[I_{\nu}(\widehat{n})-J_{\nu}\right] \tag{7}
\end{equation*}
$$

and so the source function is

$$
\begin{equation*}
S_{\nu}=J_{\nu} \tag{8}
\end{equation*}
$$

and the transfer equation can be written

$$
\begin{equation*}
\frac{d I_{\nu}(\widehat{n})}{d \tau_{\nu}}=-I_{\nu}(\widehat{n})+J_{\nu} \tag{9}
\end{equation*}
$$

where mean flux $J_{\nu}=\int I_{\nu}\left(\widehat{n}^{\prime}\right) d \Omega^{\prime} / 4 \pi$, and $d \tau_{\nu}=\varsigma_{\nu} d s$

Q: why is this intuitively correct?
Q : what is effect on I_{ν} of many scattering events?
for coherent, isotropic scattering:

$$
\begin{equation*}
\frac{d I_{\nu}(\widehat{n})}{d \tau_{\nu}}=-I_{\nu}(\widehat{n})+J_{\nu} \tag{10}
\end{equation*}
$$

depends on I_{ν} field in all directions
\Rightarrow scattering couples intensity in different directions
if many scattering events, τ_{ν} large: $I_{\nu} \rightarrow J_{\nu}$
after large number of mean free paths, photons \rightarrow isotropic
\Rightarrow (isotropic) scattering randomizes photon directions reduces anisotropy
transfer with scattering: integro-differential equation generally very hard to solve!

- Q: transfer equation modification for anisotropic scattering?

Scattering and Random Walks

Can we understand photon propagation with isotropic scattering in a simple physical picture?
simple model: random walk
between collisions, photons move in straight "steps"
with random displacement $\hat{\ell}$
position after N collisions ("steps") is \vec{r}_{N}
idealizations:

- step length uniform: $|\widehat{\ell}|=\ell_{\text {mfp }}$ mean free path
- step direction random: each $\widehat{\ell}$ drawn from isotropic distribution and independent of previous steps
- initial condition: start at center, $\vec{r}_{0}=0$

1. first step $\vec{r}_{1}=\hat{\ell}$
length $\left|\vec{r}_{1}\right|=\ell_{\mathrm{mfp}}$, direction random
average over ensemble of photons:

- $\left\langle\vec{r}_{1}\right\rangle=0$
- $\left\langle r_{1}^{2}\right\rangle=\ell_{\mathrm{mfp}}^{2}$
average positions for ensemble of photons is zero but average distance of each photon $\ell_{\text {mfp }}$

2. step N has: $\vec{r}_{N}=\vec{r}_{N-1}+\hat{\ell}$
average over ensemble of photons:
$\left\langle\vec{r}_{N}\right\rangle=\left\langle\vec{r}_{N-1}\right\rangle+\langle\hat{\ell}\rangle=\left\langle\vec{r}_{N-1}\right\rangle$
but by recursion

$$
\begin{equation*}
\left\langle\vec{r}_{N}\right\rangle=\left\langle\vec{r}_{N-1}\right\rangle=\left\langle\vec{r}_{N-2}\right\rangle=\ldots=\left\langle\vec{r}_{1}\right\rangle=0 \tag{11}
\end{equation*}
$$

$\sharp \rightarrow$ ensemble average of photons displacements still 0 as it must be by symmetry
but what about mean square displacement?

$$
\begin{align*}
r_{N}^{2} & =\vec{r}_{N} \cdot \vec{r}_{N} \tag{12}\\
& =r_{N-1}^{2}+2 \hat{\ell} \cdot \vec{r}_{N-1}+\ell_{\mathrm{mfp}}^{2} \tag{13}
\end{align*}
$$

average over photon ensemble

$$
\begin{equation*}
\left\langle r_{N}^{2}\right\rangle=\left\langle r_{N-1}^{2}\right\rangle+2\left\langle\hat{\ell} \cdot \vec{r}_{N-1}\right\rangle+\ell_{\mathrm{mfp}}^{2} \tag{14}
\end{equation*}
$$

Q: what is $\left\langle\hat{\ell} \cdot \vec{r}_{N-1}\right\rangle$?

$$
\begin{equation*}
\left\langle r_{N}^{2}\right\rangle=\left\langle r_{N-1}^{2}\right\rangle+2\left\langle\hat{\ell} \cdot \vec{r}_{N-1}\right\rangle+\ell_{\mathrm{mfp}}^{2} \tag{15}
\end{equation*}
$$

each photon scattering direction independent from previous
$\left\langle\hat{\ell} \cdot \vec{r}_{N-1}\right\rangle=\ell_{\mathrm{mfp}} r_{N-1}\langle\cos \theta\rangle=0$
so $\left\langle r_{N}^{2}\right\rangle=\left\langle r_{N-1}^{2}\right\rangle+\ell_{\mathrm{mfp}}^{2}$
but this means $\left\langle r_{N}^{2}\right\rangle=N \ell_{\mathrm{mfp}}^{2}$
\rightarrow each photon goes r.m.s. distance

$$
\begin{equation*}
r_{\mathrm{rms}}=\sqrt{\left\langle r_{N}^{2}\right\rangle}=\sqrt{N} \ell_{\mathrm{mfp}} \tag{16}
\end{equation*}
$$

so imagine photons generated at $r=0$
and, after scattering, are observed at distance L Q : number N of scatterings if optically thin? thick?

Photon Random Walks and Optical Depth

if travel distance L by random walk then after N scatterings $L=\sqrt{N} \ell_{\text {mfp }}$ but photon optical depth is $\tau=L / \ell_{\text {mfp }}$
\rightarrow counts number of mean free paths in length L
optically thick: $\tau \gg 1$
many scattering events \rightarrow this is a random walk!
$N \stackrel{\text { thick }}{\approx} \tau^{2}$
if optically thin: $\tau \ll 1$
scattering probability $1-e^{-\tau} \approx \tau \ll 1$: not random walk! mean number of scatterings over L is $N \stackrel{\text { thin }}{\approx} \tau$

」 approximate expression good for all τ

$$
\begin{equation*}
N \approx \tau+\tau^{2} \tag{17}
\end{equation*}
$$

Combined Scattering and Absorption

generally, matter can both scatter and absorb photons transfer equation must include both
for coherent isotropic scattering of thermal radiation

$$
\begin{equation*}
\frac{d I_{\nu}}{d s}=-\alpha_{\nu}\left(I_{\nu}-B_{\nu}\right)-\varsigma_{\nu}\left(I_{\nu}-J_{\nu}\right) \tag{18}
\end{equation*}
$$

giving a source function

$$
\begin{equation*}
S_{\nu}=\frac{\alpha_{\nu} B_{\nu}+\varsigma_{\nu} J_{\nu}}{\alpha_{\nu}+\varsigma_{\nu}} \tag{19}
\end{equation*}
$$

a weighted average of the two source functions
thus we can write
$\stackrel{\ddots}{G} \quad \frac{d I_{\nu}}{d s}=-\left(\alpha_{\nu}+\varsigma_{\nu}\right)\left(I_{\nu}-S_{\nu}\right)$
with extinction coefficient $\alpha_{\nu}+\varsigma_{\nu}$
generalize mean free path:

$$
\begin{equation*}
\ell_{\mathrm{mfp}, \nu}=\frac{1}{\alpha_{\nu}+\varsigma_{\nu}} \tag{21}
\end{equation*}
$$

average distance between photon interactions
in random walk picture:
probability of step ending in absorption

$$
\begin{equation*}
\epsilon_{\nu} \equiv \alpha_{\nu} \ell_{\mathrm{mfp}, \nu}=\frac{\alpha_{\nu}}{\alpha_{\nu}+\varsigma_{\nu}} \tag{22}
\end{equation*}
$$

and thus step scattering probability

$$
\begin{equation*}
\varsigma_{\nu} \ell_{\mathrm{mfp}, \nu}=\frac{\varsigma_{\nu}}{\alpha_{\nu}+\varsigma_{\nu}}=1-\epsilon_{\nu} \tag{23}
\end{equation*}
$$

also known as single scattering albedo
source function:

$$
\begin{equation*}
S_{\nu}=\epsilon_{\nu} B_{\nu}+\left(1-\epsilon_{\nu}\right) J_{\nu} \tag{24}
\end{equation*}
$$

Random Walk with Scattering and Absorption

in infinite medium: every photon created is eventually absorbed typical absorption path $\ell_{\mathrm{abs}, \nu}=1 / \alpha_{\nu}$
typical number of scattering events until absorption is

$$
\begin{equation*}
N_{\mathrm{scat}}=\frac{\ell_{\mathrm{abs}, \nu}}{\ell_{\mathrm{mfp}, \nu}}=\frac{\varsigma_{\nu}+\alpha_{\nu}}{\alpha_{\nu}}=\frac{1}{\epsilon_{\nu}} \tag{25}
\end{equation*}
$$

so typical distance traveled between creation and absorption

$$
\begin{equation*}
\ell_{*}=\sqrt{N_{\mathrm{scat}}} \ell_{\mathrm{mfp}, \nu}=\sqrt{\ell_{\mathrm{abs}, \nu} \ell_{\mathrm{mfp}, \nu}}=\frac{1}{\sqrt{\alpha_{\nu}\left(\alpha_{\nu}+\varsigma_{\nu}\right)}} \tag{26}
\end{equation*}
$$

diffusion/thermalization length or effective mean free path

What about a finite medium of size s ? define optical thicknesses $\tau_{\text {scat }}=\varsigma_{\nu} s, \tau_{\text {abs }}=\alpha_{\nu} s$
$\stackrel{\text { and }}{ } \tau_{*}=s / \ell_{*}=\tau_{\text {scat }}^{1 / 2}\left(\tau_{\text {scat }}+\tau_{\text {abs }}\right)^{1 / 2}$
Q: expected behavior if $\tau_{*} \ll 1 ? \tau_{*} \gg 1$?
$\tau_{*}=s / \ell_{*}$: path in units of photon travel
until absorption
$\tau_{*} \ll 1$: effectively thin or translucent
photons random walk by scattering, seen before absorption luminosity of thermal source with volume V is

$$
\begin{equation*}
L_{\nu} \stackrel{\text { thin }}{=} 4 \pi \alpha_{\nu} B_{\nu} V=4 \pi j_{\nu}(T) V \tag{27}
\end{equation*}
$$

$\tau_{*} \gg 1$: effectively tick
thermally emitted photons scattered then absorbed before seen expect $I_{\nu} \rightarrow S_{\nu} \rightarrow B_{\nu}$
rough estimate of luminosity of thermal source: most emission from "last scattering" surface of area A where photons travel $s=\ell_{*}$

$$
\begin{equation*}
L_{\nu} \stackrel{\text { thick }}{\approx} 4 \pi \alpha_{\nu} B_{\nu} \ell_{*} A \approx 4 \pi \sqrt{\epsilon_{\nu}} B_{\nu} A \tag{28}
\end{equation*}
$$

Life Inside a Star

In stars:

- nuclear reactions create energy and γ rays deep in the interior (core)
- the energy and radiation escape to the surface after many interactions

How does this occur?

Consider a point at stellar radius r with temperature $T(r)$ having blackbody radiation at T, and matter

Q: what is intensity pattern (i.e., over solid angle) ifT is uniform?
Q: what is the pattern more realistically?
$\stackrel{\rightharpoonup}{\bullet}$
Q: what drives the outward energy flow? what impedes it?
Q: relevant length scale(s) for radiation flow?
if $T(r)$ uniform and has no gradient, so are blackbody intensity B and flux T
\rightarrow no net flow of radiation!
but in real stars: T decreases with r
so at r :

- intensity from below greater than from above
- drive net flux outwards
- impeded by scattering and absorption
on scale $\ell_{\mathrm{mfp}, \nu}=\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1}$
- generally $\ell_{\mathrm{mfp}, \nu} \ll r$: over this scale, see radiation as mostly isotropic with small dipole

Radiative Diffusion: Sketch Rosseland Approximation

given a small temperature dipole, expect net radiation flux

$$
\begin{align*}
F_{\nu}^{\text {net }} & \sim-\pi \Delta B_{\nu} \sim-\pi\left[B_{\nu}\left(T_{r+\delta r}\right)-B_{\nu}\left(T_{r+\delta r}\right)\right] \tag{29}\\
& =-\pi \frac{\partial B_{\nu}}{\partial T} \frac{\partial T}{\partial r} \delta r \tag{30}\\
& =-\pi \frac{\partial B_{\nu}}{\partial T} \frac{\partial T}{\partial r} \ell_{\mathrm{mfp}, \nu} \tag{31}
\end{align*}
$$

So the total flux $F=\int F_{\nu}^{\text {net }} d \nu$ has

$$
\begin{equation*}
F=-\frac{4}{3} \pi \frac{\partial_{T} B}{\alpha_{\mathrm{R}}} \partial_{r} T \tag{32}
\end{equation*}
$$

- $\vec{F} \propto-\nabla T$: diffusion flux! requires gradient!
- average over ν gives Rosseland mean absorption coefficient

$$
\begin{equation*}
\frac{1}{\alpha_{R}}=\frac{\int\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1} \partial_{T} B_{\nu} d \nu}{\int \partial_{T} B_{\nu} d \nu} \tag{33}
\end{equation*}
$$

effective mean free path, weighted by Planck derivative

Director's Cut Extras

Rosseland Approximation in Detail

Imagine a plane-parallel medium:
n, ρ, T only depend on z
Think: interior of a star

photon propagation depends only on angle θ between path direction and $\bar{z} Q$: why? why not on ϕ too?
change to variable $\mu=\cos \theta$, and note that path element $d s=d z / \cos \theta=d z / \mu$, so

$$
\begin{equation*}
\mu \frac{\partial I_{\nu}(z, \mu)}{\partial z}=-\left(\alpha_{\nu}+\varsigma_{\nu}\right)\left(I_{\nu}-S_{\nu}\right) \tag{34}
\end{equation*}
$$

note: deep inside a real star like the Sun, $\ell_{*} \sim 1 \mathrm{~cm} \ll R_{\star}$ Q : implications?
$\ell_{*} \sim 1 \mathrm{~cm} \ll R_{\star}$: rapid thermalization, damping of anisotropy
expect stellar interior to have intensity field that

- changes slowly compared to mean free path
- is nearly isotropic
so to zeroth order in ℓ_{*}, transfer equation

$$
\begin{equation*}
I_{\nu}=S_{\nu}-\mu \ell_{*} \frac{\partial I_{\nu}(z, \mu)}{\partial z} \tag{35}
\end{equation*}
$$

gives

$$
\begin{equation*}
I_{\nu}^{(0)} \approx S_{\nu}^{(0)}(T) \tag{36}
\end{equation*}
$$

this is angle-independent, so: $J_{\nu}^{(0)}=S_{\nu}^{(0)}$ and $I_{\nu}^{(0)}=S_{\nu}^{(0)}=B_{\nu}$

Iterate to get first-order approximation

$$
\begin{equation*}
I_{\nu}^{(1)} \approx S_{\nu}^{(0)}-\mu \ell_{*} \partial_{z} I_{\nu}^{(0)}=B_{\nu}-\frac{\mu}{\alpha_{\nu}+\varsigma_{\nu}} \partial_{z} B_{\nu} \tag{37}
\end{equation*}
$$

what angular pattern does this intensity field have? why?
to first order, intensity pattern

$$
\begin{equation*}
I_{\nu}^{(1)} \approx S_{\nu}^{(0)}-\mu \ell_{*} \partial_{z} I_{\nu}^{(0)}=B_{\nu}-\frac{\mu}{\alpha_{\nu}+\varsigma_{\nu}} \partial_{z} B_{\nu} \tag{38}
\end{equation*}
$$

i.e., a dominant isotropic component plus small correction $\propto \mu=\cos \theta$: a dipole!
if T decreases with z, then $\partial_{z} B_{\nu}<0$, and so intensity brighter downwards (looking into hotter region)
use this find net specific flux along z

$$
\begin{equation*}
F_{\nu}(z)=\int I_{\nu}^{(1)}(z, \mu) \cos \theta d \Omega=2 \pi \int_{-1}^{+1} I_{\nu}^{(1)}(z, \mu) \mu d \mu \tag{39}
\end{equation*}
$$

only the anisotropic piece of $I_{\nu}^{(0)}$ of survives Q : why?

$$
\begin{align*}
F_{\nu}(z) & =-\frac{2 \pi}{\alpha_{\nu}+\varsigma_{\nu}} \partial_{z} B_{\nu} \int_{-1}^{+1} \mu^{2} d \mu \tag{40}\\
& =-\frac{4 \pi}{3\left(\alpha_{\nu}+\varsigma_{\nu}\right)} \partial_{z} B_{\nu} \tag{41}
\end{align*}
$$

net specific flux along z

$$
\begin{equation*}
F_{\nu}(z)=-\frac{4 \pi}{3\left(\alpha_{\nu}+\varsigma_{\nu}\right)} \partial_{z} B_{\nu}=-\frac{4 \pi}{3\left(\alpha_{\nu}+\varsigma_{\nu}\right)} \partial_{T} B_{\nu} \partial_{z} T \tag{42}
\end{equation*}
$$

since $B_{\nu}=B_{\nu}(T)$

total integrated flux

$$
\begin{equation*}
F(z)=\int F_{\nu}(z) d \nu=-\frac{4 \pi}{3} \partial_{z} T \int\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1} \frac{\partial B_{\nu}}{\partial T} d \nu \tag{43}
\end{equation*}
$$

to make pretty, note that

$$
\begin{equation*}
\int \partial_{T} B_{\nu} d \nu=\partial_{T} \int B_{\nu} d \nu=\partial_{T} B(T)=\frac{4 \pi \sigma T^{3}}{\pi} \tag{44}
\end{equation*}
$$

and define Rosseland mean absorption coefficient

$$
\begin{equation*}
\frac{1}{\alpha_{R}}=\frac{\int\left(\alpha_{\nu}+\varsigma_{\nu}\right)^{-1} \partial_{T} B_{\nu} d \nu}{\int \partial_{T} B_{\nu} d \nu} \tag{45}
\end{equation*}
$$

average effective mean free path, weighted by Planck derivative

