> Astro 404
> Lecture 3
> Aug 30, 2019

Announcements:

- Problem Set 1 posted today on Compass due on Compass in pdf, next Friday Sept 6 at 5:00pm
- Note: problem sets are non-trivial but usually not as bad as they look wordy writeups are to help guide you and get the punchlines
- you may speak to me, the TA, and other students
but you must understand your own answers and write them yourself and in your own words
- - Syllabus available
- note: yesterday LIGO detected two different $\mathrm{BH} / \mathrm{BH}$ mergers!

Last Time: Electromagnetic Radiation

Q: why electromagnetic? why radiation?

Q: why so important for stellar astrophysics?

Q: definition of flux? units? everyday experience?

Stellar Astronomy

geometry of the sky: spherical
stars appear "fixed" (on human timescales)
to a vast celestial sphere
star locations: angular coordinates on celestial sphere
offical celestial sphere divided into 88 regions: constellations
cover the sky like states on a map
so each point on sky lies in exactly one constellation
brightest star in night sky: Sirius in constellation Canus Major officially: α Canis Majoris ($\alpha \mathrm{CMa}$)
unofficially: the "dog star" www: Canus Major

iClicker Poll: Naked-Eye Stars

Vote your conscience!
On a clear night, outside of a city, about how many stars can you see with the naked eye?

A More than the number of people in a packed movie theater

B More than the number of people at a UI football game

C More than population of Great State of Illinois

Stellar Flux Observed

to naked eye, in clear sky:
about 6000 (!) stars visible over celestial sphere
\Rightarrow about 3000 at any one night
...but this is just the "tip of the iceberg"

Sun: $F_{\odot}=1370 \mathrm{~W} \mathrm{~m}^{-2}$
Sirius, brightest star, has

$$
\frac{F_{\text {Sirius }}}{F_{\odot}}=7.6 \times 10^{-11}
$$

faintest stars observed with modern telescopes:
$F_{\text {faintest }} / F_{\text {Sirius }} \lesssim 2 \times 10^{-13}$!
more than 1 trillon times fainter-a huge range in stellar fluxes!
Q: what does this suggest for how we quantify flux?

Stellar Flux Quantified

huge range in stellar fluxes suggests we focus on exponent that is, take logarithm of flux so: convenient to express measured flux as $m \propto \log F$
also: human eye has logarithmic response to brigtness ancient Greeks quantified stellar brightness each star given "apparent magnitude" (1st, 2nd, 3rd, etc) due to log sensitivity of naked eye:
apparent magnitude differences correspond to flux ratios

$$
\begin{equation*}
m_{2}-m_{1} \propto \log F_{2}-\log F_{1}=\log \frac{F_{2}}{F_{1}} \tag{1}
\end{equation*}
$$

very convenient! that's the good news.
a
Q: units of apparent magnitudes?
Q : what's the bad news?

Apparent Magnitude Scale for Flux

good news: logarithms convenient for star fluxes
this is built into magntiude scacle
mag units: dimensionless! (but usually say "mag") because mags are logs of ratio of two dimensionful fluxes with physical units like W / m^{2}
bad news: historically, mag conceived as "rank" brightest stars are 1st magnitude: top dog next dimmer stars are 2nd magnitude, etc. so $m \propto-\log F$: smaller flux \leftrightarrow larger magnitude
, to match historic system, modern fluxes set by:

- $m_{2}-m_{1}=5 \mathrm{mag}$ corresponds to $F_{1} / F_{2}=100$
- magnitude "zero point" set by star Vega: $m_{z p}=0=m_{\text {Vega }}$ PS 1: show this gives magnitdue m vs flux F relation

$$
\begin{equation*}
m=-\frac{5}{2} \log _{10}\left(\frac{F}{F_{\mathrm{zp}}}\right) \tag{2}
\end{equation*}
$$

Living with Magnitudes

stellar fluxes tabulated as magnitudes. sorry.

$$
\begin{equation*}
m=-\frac{5}{2} \log _{10}\left(\frac{F}{F_{\mathrm{zp}}}\right) \tag{3}
\end{equation*}
$$

- ex: Sirius has $m_{\text {Sirius }}=-1.45 \rightarrow$ brighter than Vega so: $F_{\text {Sirius }}=3.8 F_{\text {Vega }}$
- ex: Polaris (α Ursae Minorus $=\alpha \cup M i$) Q: what's this? why name?
$m_{\text {Polaris }}=2.02$
Q: rank brightness of Polaris, Sirius, Vega?

Star Color

stars have colors! and they are different!
www: objective prism spectra
very useful to quantify color!
could try spectrum peak $\lambda_{\text {max }}$ - but often, absorption lines \rightarrow spectrum not smooth also: full spectrum from spectrometer "expensive"
\rightarrow have to collect more light since spread out

Q: what's a cheaper way to get color information from an image?
Note: imaging detectors are CCDs
\rightarrow 'democratically" count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
\Rightarrow use filter which accepts light only in a range of wavelengths: "passband"
www: filter wheel
flux $F_{B} \rightarrow m_{B}=B$ mag: blue band, centered at $\lambda \approx 440 \mathrm{~nm}$ flux $F_{V} \rightarrow m_{V}=V$: "visual", yellowish, $\lambda \approx 550 \mathrm{~nm}$ response roughly similar to naked eye
...and many others
www: filter λ ranges
images in multiple filters \leftrightarrow crude spectrum

Q: how to quantify color based on filter data?

Color Index

measure color by comparing flux at different λ bands
"color index" is magnitude difference, e.g.,

$$
\begin{equation*}
B-V=2.5 \log \left(\frac{F_{V}}{F_{B}}\right)+\mathrm{const} \tag{4}
\end{equation*}
$$

\rightarrow measures ratio of fluxes in two bands
ex: www: Orion
Betelgeuse reddish, $B-V=1.5$
Rigel bluish, $B-V=-0.1$

Flux from a Point Source

consider spherical source (hint: it's a star!) of size R emitting light isotropically (same in all directions) with constant power L ("Iuminosity")
at radius $r>R$ (outside of source) area $A=4 \pi r^{2}$, and flux is

$$
F=\frac{L}{4 \pi r^{2}}
$$

inverse square law
Q: what principle at work here?
Q what implicitly assumed?
$\stackrel{\rightharpoonup}{N}$ for we observers to infer luminosity (star wattage)
need both flux F and distance r

Inverse Square Law

Ultimately relies on energy conservation
\rightarrow energy emitted $d \mathcal{E}_{\text {emit }}=L d t_{\text {emit }}$ from source is same as energy observed $d \mathcal{E}_{\mathrm{obs}}=F A d t_{\mathrm{obs}}$

Thus: inverse square derivation assumes

- no emission, absorption, or scattering outside of source we will revisit these
- no relativistic effects (redshifting, time dilation)
- Euclidean geometry-i.e., no spatial curvature, usually fine unless near strong gravity source

Luminosity

Warning! apparent brightness \neq Iuminosity!

- luminosity $=$ power emitted from star: "wattage" units: energy/time, e.g., Watts
- flux $=$ power per unit area (at some observer location) units: power/area, e.g., Watts/m²

Apparent brightness and luminosity related by

$$
\begin{equation*}
\text { observer-dependent } F=\frac{L}{4 \pi r^{2}} \frac{\text { observer-independent }}{\text { observer-dependent }} \tag{5}
\end{equation*}
$$

inverse square law!
farther \leftrightarrow dimmer
hence brightness is "apparent" - depends on observer
but L is intrinsic fundamental property of a star
Q : how measure star L ?

To find \star luminosities

1. Measure F
2. Measure d
3. solve: $L=4 \pi d^{2} F$
ergo: to compare wattage of stars, need distances!

Q: what about color-how does that depend on distance?

