Astro 404 Lecture 4 Sept. 4, 2019

Announcements:

- Problem Set 1 posted on Compass
 due on Compass in pdf this Friday Sept 6 at 5:00pm
- Office Hours: Instructor—right after class today TA: Thursday noon—1:00 pm
- iClicker registration link now on Compass

Last time: stars observed—flux versus luminosity

Q: what's the difference? lightbulb analogy?

Q: how are they related?

Q: which is intrinsic to the star? what's needed to know this?

Apparent brightness and luminosity related by

observer-dependent
$$F = \frac{L}{4\pi r^2} \frac{\text{observer-independent}}{\text{observer-dependent}}$$
 (1)

inverse square law!

farther ↔ dimmer

hence brightness is "apparent" — depends on observer but L is intrinsic fundamental property of a star

To find * luminosities

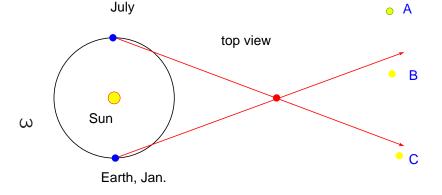
- 1. Measure F
- 2. Measure r
- 3. solve: $L = 4\pi r^2 F$

ergo: to compare wattage of stars, need distances!

Q: how to measure?

Distances to Stars: Parallax

a difficult, longstanding (ongoing!) problem today many techniques exist

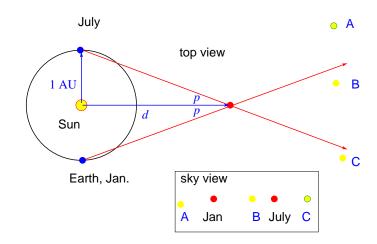

note: technology only good enough in last 2 centuries anchor: Earth-Sun distance (gotten from radar)

 $r_{\text{Earth-Sun}} \equiv 1 \text{ au} = 1.5 \times 10^{11} \text{ m}$: astronomical unit

Parallax – the "gold standard" of stellar distances Demo: thumb's up—arm's length, halfway

as Earth orbits, our viewpoint shifts (slightly!)

 \rightarrow nearby *s appear to move w.r.t. background *s


Q: diagram is top view—what is sky view over 1 year?

Q: what should we measure? what does it tell us?

Parallax: Geometry and Units

measure: angular shift from midpoint p

trig technology: $d \tan p = 1$ au \Rightarrow distance d = 1 au/ $\tan p$ but p tiny! (≤ 1 arc sec $\sim 10^{-5}$ rad $\ll 1$) $\rightarrow \tan p_{\rm rad} \approx p_{\rm rad}$, so d = 1 au/ $p_{\rm rad}$, or

$$d = \frac{1 \text{ pc}}{p_{\text{arcsec}}} \tag{2}$$

where p_{arcsec} is p in arc sec. and

1 pc = 1 parsec = 1 au/(1 arcsec)_{rad} = 3.086×10^{16} m parsec: distance to a star with p = 1 arcsec

occasionally use **light year** = distance light travels in 1 yr 1 lyr = $c \times 1$ yr = 9.5×10^{15} m and so: 1 pc = 3.26 lyr

Parallax: Observations

typical parallactic shift is tiny (if observable at all!) all less than 1 arcsec = $\frac{1}{3600}$ deg = 5×10^{-6} radian!! Sirius: p = 0.366 arcsec $d = \frac{1}{0.366}$ pc = 2.65 pc $\simeq 5 \times 10^{5}$ au

nearest stars to us: α Centauri triple (!) star system α Cen A & B, Proxima: $d(\alpha$ Cen) = 1.3 pc = 4 lyr note: even from nearest star, light takes 4 *years* to get here!

Lessons:

- ullet 1 pc \sim typical distance between neighboring stars in our Galaxy (and others) www: 100 nearest stars
- ullet parallax p tiny at best: requires precision astrometry until recently: parallax only available for nearest stars
- Revolution: GAIA space mission www: GAIA

ഗ

Standard Candles

imagine we can find objects—"standard candles" with L known somehow Q: everyday examples?

then when we measure F we can immediately infer **luminosity distance**

$$d_L = \sqrt{\frac{L}{4\pi F}} \tag{3}$$

Q: why would this be incredibly useful?

Q: what are possible astrophysical standard candles?

Q: why is this not easy to do in practice?

we'll see: stars provide several possible standard candles this will be a running theme of the course

Stellar Distances and Magnitudes

recall: apparent magnitude is measure of star flux

but if know distance, can compute: absolute magnitude

abs mag $M \equiv$ apparent mag if star placed at $d_0 = 10$ pc

Q: why need distance to find abs mag?

Q: what does abs mag measure, effectively?

Absolute Magnitude

absolute magnitude M= apparent mag at $d_0=10$ pc

places all stars at constant fixed distance

- → a stellar "police lineup"
- \rightarrow then differences in F only due to diff in L
- → absolute mag effectively measure luminosity

Star	absolute magnitude in visual band
Sun (symbol ⊙)	$M_{V,\odot}=$ 4.76 mag
Sirius	$M_{V, \mathrm{Sirius}} = +1.43 \mathrm{\ mag}$
Vega	$M_{V, Vega} = +0.58 \text{ mag}$
Polaris	$M_{V, Polaris} = -3.58 \; mag$

Q: rank them in order of descending L?

Immediately see that Sun neither most nor least luminous star around

Decoding Starlight

The facts of life for stellar astrophysics:

- most stars are unresolved
 appear as point sources to our telescopes
- thus we cannot map their surfaces

for most stars: all we can measure are *broadband colors* or more generally their *spectra*

www: example spectra: the Sun, other stars

Q: what strikes you?

Q: what physics needed to understand?

Stellar Spectra: First Impressions

observed stellar spectra: commonalities

- broad wavelength IR, optical, UV
- show continuum emission at all wavelengths not just a collection of emission lines
- see many sharp-ish dips: absorption lines

spectral variety

- great range of weighting across wavebands → colors
- great variety in line patterns, depths, widths

all of this carries enormous information!

to decode: need to understand light interactions with matter

Matter, Temperature, and Light

hot matter glows (think stove burner) temperature — radiation connection very useful for astronomers!

but atoms made of charged particles random thermal motion \rightarrow changing EM forces \rightarrow light Maxwell eqs: accelerating charges emit EM radiation!

thus: thermal body = object at a temperature T emits EM radiation: **thermal radiation** spectrum of this "heat radiation" depends on T

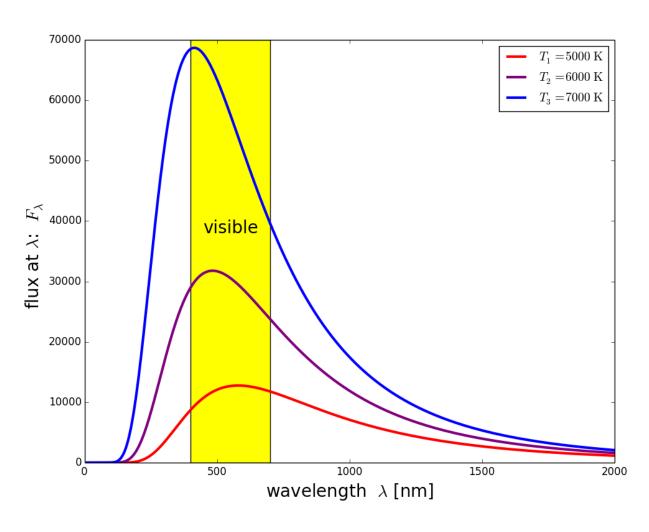
Blackbodies

useful* to define an ideal substance: a perfect absorber of light: "blackbody" absorbs all λ , reflects none

*a useful idealization in the same way an "ideal gas" is useful: brings out essential physics, and a good approximation to behavior of many real substances

Q: what would such a thing look like?

Q: what are real substances almost like this?


Q: what everyday object is nearly the opposite of this?

perfect absorber of light: "blackbody" imagine: lump of idealize coal, reflects no light

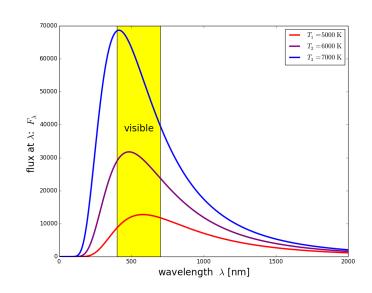
when in contact with external world at nonzero T blackbody absorbs energy \to heats up re-emits according to temperature T "blackbody radiation" = thermal radiation

spectrum depends only on T: universal property of objects in thermal equilibrium

Blackbody Spectrum

Q: trends vs λ ?

Q: trends vs T?


Q: hotter = ???

Thermal Spectrum: Light as Thermometer!

for blackbody at temperature T: peak $\lambda = \text{color}$ seen:

$$\lambda_{
m peak} \propto 1/T$$

where T is absolute temperature in Kelvin units

Wien's law:

$$\lambda_{\text{peak}} = \frac{0.29 \text{ cm K}}{T} \propto \frac{1}{T} \tag{4}$$

hotter \rightarrow more blue \rightarrow shorter λ

⇒ spectrum as thermometer color measures temperature

iClicker Poll: Human Radiation

Humans have temperature T > 0

Do humans emit blackbody radiation?

- A no: T_{human} is too low to emit significant radiation
- B no: T_{human} is too high to emit significant radiation
- yes: human radiation exists, but is invisible
- yes: human radiation is visible seen all the time! percieved as hair color, eye color, etc.

any object with T > 0 emits thermal radiation! but not always visible to naked eye

Human radiation:

 $\lambda_{\rm peak} = 0.29 \text{ cm K}/300 \text{ K} \approx 10^{-3} \text{ cm} - 10^{-5} \text{ m}$

www: EM spectrum

IR!

www: IR gallery--coffee, people, puppy

not only good for household objects, but also for galaxies www: multiwavelength star clusters, galaxies

X-ray emission seen from Cassiopeia A

www: Cas A spectrum

some of this is thermal emission: how hot is it?

 $T \sim 0.29 \text{ cm K}/10^{-7} \text{ cm} = 3 \times 10^6 \text{ K}!$

Q: what might have made it so hot?

Q: quick-and-dirty way to estimate star temperature?

Q: what part of the star has this temperature?

Stellar Thermometry: Color Temperature

```
recall — broadband fluxes give "poor person's spectrum" pro: broad passband flters don't need as much light so can measure quickly con: don't get detailed spectra (lines, etc) also recall: color \Leftrightarrow flux \ ratios usually expressed as color \ index for bands 1 and 2: m_2 - m_1 = 2.5 \log_{10}(F_1/F_2)
```

so if spectrum is well approximated by blackbody Wien's law: color index estimates color temperature more specifically: the average surface temperature

Q: compare Betelgeuse vs Rigel?

Q: estimate Sun's T_{color} ?

Color Temperature: Examples

qualitatively:

in Orion, reddish Betelgeuse is cooler than bluish Rigel in Gemini: red Castor cooler than blue Pollux

quantitatively:

```
the Sun's color temperature T_{\rm color,\odot}\approx 5900 K check: white sunlight \to peaks min-optical \lambda_{\rm max}\sim 500 nm gives T_{\rm color}=0.3 mm K/\lambda_{\rm max}\sim 6000 K yay!
```

Blackbody Flux

hotter objects are glow brighter than cooler ones i.e., blackbody surface flux increases with T

blackbody flux B: summed (integrated) over all λ

$$F_{\text{surface}}(T) \stackrel{\text{blackbody}}{\equiv} B(T) = \sigma T^4$$
 Stefan-Boltzmann law (5)

- applies to surface of blackbody (solid, liquid, dense gas)
- Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \; \mathrm{Watt} \; \mathrm{m}^{-2} \; \mathrm{K}^{-4}$
- ullet note very strong dependence on (absolute) T!
- ullet note that blackbody flux depends *only* on emitter T independent of composition

Q: for blackbody sphere of radius R, sum of flux over surface?

Stellar Thermometry II: Effective Temperature

for a *blackbody sphere* of radius R sum (really, integration) of flux over surface gives **luminosity**!

$$4\pi R^2 B = 4\pi R^2 \ \sigma T^4 = \text{flux} \times \text{area} = \text{power} = L \tag{6}$$

for a real star, if R known, can compute **effective temperature**

$$T_{\text{eff}} = \left(\frac{L}{4\pi\sigma R^2}\right)^{1/4} \tag{7}$$

Q: What is T_{eff} for a perfect blackbody?

Q: What if $T_{\text{eff}} \neq \text{color temperature?}$ How could that be?

Temperatures of Real Stars

if star were pefect blackbody:

color temperature = $T_{\rm eff}$ = true thermodynamic temperature T

but real star spectra are not perfect blackbodies so in general, none of these "temperatures" agree!

in practice: color temp vs $T_{\rm eff}$ tests blackbody approximation $T_{\rm eff,\odot}=$ 5780 K, close to but not same as $T_{\rm color,\odot}$ blackbody approximation not too bad!

better: make detailed model of stellar atmosphere compute spectrum in presence of lines and changing temperature with depth use this to infer temperature structure

A Census of Stars

We now have the technology to take a census of stars!

For large sample of stars, measure L and T for each plot each star's (T, L) point on diagram of L vs T

Some possible trends:

- random scatter
- all stars fall onto same point
- tight clump of points
- a line or curve

Q: what would each of these imply?

iClicker Poll: Star Temperature and Luminosity

Vote your conscience!

For large sample of stars, measure L and T for each plot points on diagram of L vs TWhat will the data show?

- A random scatter: stars have large range of L, and of T, and in any combination
- B tight clump of points: stars are nearly identical, all with very similar L and T
- f C a clear trend: stars have large range of L and of T but the two vary together (correlated)
- D none of the above

A Stellar Census: Hertzsprung-Russell Diagram

Hertzsprung-Russell: plot L vsT for lotsa stars really, abs mag M_V vs spectra type but these are equivalent to L and T

www: H-R diagram

Q: what patterns do you notice?

Q: where are most stars?

Q: where is the Sun?

Q: how does the Sun compare to other stars?

Hertzsprung-Russell Diagram

```
(i.e., not a specially picked cluster) trends emerge  \begin{array}{l} \text{most stars ($\sim$ 90\%) fall on curve: "main sequence"} \\ \text{(including the Sun!); "dwarfs"} \\ \text{most of the rest: cooler but more luminous: "giants"} \\ \text{$Q$: how do we know they are giant?} \\ \text{a rare few: hot but luminous: "supergiants"} \\ \text{not rare but dim and hard to find:} \\ \text{very hot but very low-$L$ objects: "white dwarfs"} \\ \text{$Q$: how do we know they are teeny?} \\ \end{array}
```

for a "fair sample" of stars

Ŋ

Q: what does the HR diagram tell us about the Sun?

H-R and the Sun

The Sun on H-R diagram:

- found on the main sequence
- position is in the middle of the curve

but the main sequence is where most stars are found!

thus: the Sun is a typical star!

- ullet lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest

Other questions arise:

- why do stars lie on the main sequence?
- what controls their position on the diagram?
- what's up with the giants, supergiants, and white dwarfs?
 ...stay tuned