> Astro 404
> Lecture 5
> Sept. 6, 2019

Announcements:

- Problem Set 1 due on Compass today at 5:00pm
- Problem Set 2 posted, due next Friday
- iClicker registration link now on Compass

Last time:

- star distances

Q: what's the "gold plated" way to measure distance?
Q : why can't we use this technique for all cosmic objects?

- stellar spectra and colors: diverse patterns
but continuum spectra with absorption line features
- light and matter in thermodynamic equilibrium:
blackbody radiation
Q: what's a blackbody? what is its radiation pattern?

Blackbody Spectrum

$Q:$ trends vs λ ?
Q : trends vs T ?
Q: hotter $=$???

Thermal Spectrum: Light as Thermometer!

for blackbody at temperature T : peak $\lambda=$ color seen:

$$
\lambda_{\text {peak }} \propto 1 / T
$$

where T is absolute temperature in Kelvin units

Wien's Iaw:

$$
\begin{equation*}
\lambda_{\text {peak }}=\frac{0.29 \mathrm{~cm} \mathrm{~K}}{T} \propto \frac{1}{T} \tag{1}
\end{equation*}
$$

hotter \rightarrow more blue \rightarrow shorter λ
ω
\Rightarrow spectrum as thermometer color measures temperature

iClicker Poll: Human Radiation

Humans have temperature $T>0$
Do humans emit blackbody radiation?

A no: $T_{\text {human }}$ is too low to emit significant radiation

B no: $T_{\text {human }}$ is too high to emit significant radiation

C yes: human radiation exists, but is invisible

D yes: human radiation is visible seen all the time! perceived as hair color, eye color, etc.
any object with $T>0$ emits thermal radiation!
but not always visible to naked eye

Human radiation:
$\lambda_{\text {peak }}=0.29 \mathrm{~cm} \mathrm{~K} / 300 \mathrm{~K} \approx 10^{-3} \mathrm{~cm}-10^{-5} \mathrm{~m}$
www: EM spectrum
IR!
www: IR gallery--coffee, people, puppy
not only good for household objects, but also for galaxies
www: multiwavelength star clusters, galaxies
X-ray emission seen from Cassiopeia A
G
www: Cas A spectrum
some of this is thermal emission: how hot is it?
$T \sim 0.29 \mathrm{~cm} \mathrm{~K} / 10^{-7} \mathrm{~cm}=3 \times 10^{6} \mathrm{~K}$!
Q : what might have made it so hot?

Q: quick-and-dirty way to estimate star temperature?
Q: what part of the star has this temperature?

Stellar Thermometry: Color Temperature

recall - broadband fluxes give "poor person's spectrum" pro: broad passband filters don't need as much light
so can measure quickly
con: don't get detailed spectra (lines, etc)
also recall: color \Leftrightarrow flux ratios
usually expressed as color index
for bands 1 and 2: $m_{2}-m_{1}=2.5 \log _{10}\left(F_{1} / F_{2}\right)$
so if spectrum is well approximated by blackbody
Wien's law: color index estimates color temperature more specifically: the average surface temperature
o
Q: compare Betelgeuse vs Rigel?
Q: estimate Sun's $T_{\text {color }}$?

Color Temperature: Examples

qualitatively:

in Orion, reddish Betelgeuse is cooler than bluish Rigel
in Gemini: red Castor cooler than blue Pollux

quantitatively:

the Sun's color temperature $T_{\text {color }, \odot} \approx 5900 \mathrm{~K}$ check: white sunlight \rightarrow peaks min-optical $\lambda_{\max } \sim 500 \mathrm{~nm}$ gives $T_{\text {color }}=0.3 \mathrm{~mm} \mathrm{~K} / \lambda_{\max } \sim 6000 \mathrm{~K}$ yay!

Blackbody Flux

hotter objects are glow brighter than cooler ones i.e., blackbody surface flux increases with T
blackbody flux F_{bb} : summed (integrated) over all λ

$$
\begin{equation*}
F_{\text {surface }}(T) \stackrel{\text { blackbody }}{\equiv} F_{b b}(T)=\sigma T^{4} \text { Stefan-Boltzmann law } \tag{2}
\end{equation*}
$$

- applies to surface of blackbody (solid, liquid, dense gas)
- Stefan-Boltzmann constant $\sigma=5.67 \times 10^{-8}$ Watt $\mathrm{m}^{-2} \mathrm{~K}^{-4}$
- note very strong dependence on (absolute) T !
- note that blackbody flux depends only on emitter T independent of composition

Q: for blackbody sphere of radius R, sum of flux over surface?

Stellar Thermometry II: Effective Temperature

for a blackbody sphere of radius R
sum (really, integration) of flux over surface gives luminosity!

$$
\begin{equation*}
4 \pi R^{2} B=4 \pi R^{2} \sigma T^{4}=\text { flux } \times \text { area }=\text { power }=L \tag{3}
\end{equation*}
$$

for a real star, if R known, can compute effective temperature

$$
\begin{equation*}
T_{\mathrm{eff}}=\left(\frac{L}{4 \pi \sigma R^{2}}\right)^{1 / 4} \tag{4}
\end{equation*}
$$

Q: What is $T_{\text {eff }}$ for a perfect blackbody?
Q: What if $T_{\text {eff }} \neq$ color temperature? How could that be?

Temperatures of Real Stars

if star were perfect blackbody:
color temperature $=T_{\text {eff }}=$ true thermodynamic temperature T
but real star spectra are not perfect blackbodies so in general, none of these "temperatures" agree!
in practice: color temp vs $T_{\text {eff }}$ tests blackbody approximation
$T_{\text {eff }, \odot}=5780 \mathrm{~K}$, close to but not same as $T_{\text {color }, \odot}$
blackbody approximation not too bad!
better: make detailed model of stellar atmosphere compute spectrum in presence of lines
$\stackrel{\rightharpoonup}{\circ}$ and changing temperature with depth
use this to infer temperature structure

A Census of Stars

We now have the technology to take a census of stars!

For large sample of stars, measure L and T for each plot each star's (T, L) point on diagram of L vs T

Some possible trends:

- random scatter
- all stars fall onto same point
- tight clump of points
- a line or curve
$\sharp Q$: what would each of these imply?

iClicker Poll: Star Temperature and Luminosity

Vote your conscience!
For large sample of stars, measure L and T for each
plot points on diagram of L vs T
What will the data show?
A random scatter: stars have large range of L, and of T, and in any combination

B tight clump of points: stars are nearly identical, all with very similar L and T

C a clear trend: stars have large range of L and of T but the two vary together (correlated)

D none of the above

A Stellar Census: Hertzsprung-Russell Diagram

Hertzsprung-Russell: plot L vsT for lotsa stars
really, abs mag M_{V} vs spectra type
but these are equivalent to L and T
www: Gaia H-R diagrams for 3700 / 30,000 / 2 million nearest stars

Q: what patterns do you notice?
Q : where are most stars?
Q: where is the Sun?
Q : how does the Sun compare to other stars?

Hertzsprung-Russell Diagram

for a "fair sample" of stars
(i.e., not a specially picked cluster)
trends emerge
www: Gaia HRD for 4+ million stars
most stars ($\sim 90 \%$) fall on curve: "main sequence"
(including the Sun!); "dwarfs"
most of the rest: cooler but more luminous: "giants"
Q: how do we know they are giant?
a rare few: hot but luminous: "supergiants"
not rare but dim and hard to find:
very hot but very low- L objects: "white dwarfs"
Q: how do we know they are teeny?
note huge range in luminosity - more than $10^{-4} L_{\odot}<L<10^{4} L_{\odot}$ and in temperature: $3000 \mathrm{~K}<T<30,000 \mathrm{~K}$
imagine some main sequence stars are binaries (pairs)
Q: if unresolved (appear as one star), effect on HR diagram?

Hertzsprung-Russell Diagram and Binaries

if a single Gaia point source is an unresolved binary flux sums light both stars
if stars are identical:

- color same for both-unchanged in unresolved binary
- binary's luminosity is $2 \times$ single-star luminosity

PS1: absolute magnitude brighter by ≈ 0.75 mag

- net result: HRD vertical shift by ≈ 0.75 mag
www: Gaia HRD with 0.75 mag shift shown
Q: lesson?

Q: what does the HR diagram tell us about the Sun?

H-R and the Sun

The Sun on H-R diagram:

- found on the main sequence
- position is in the middle of the curve
but the main sequence is where most stars are found!
thus: the Sun is a typical star!
- lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest

Other questions arise:

- why do stars lie on the main sequence?
- what controls their position on the diagram?

ん

- what's up with the giants, supergiants, and white dwarfs?
...stay tuned

Weighing Stars

We saw that clever measurements give a stars

- luminosity
- surface temperature
- radius

What about mass?

For single stars:
mass determination difficult, very indirect
but we can find masses for stars in binary systems

Measuring Star Masses: Binary Systems

for single stars without companions: can't accurately find mass

But can find masses for binary systems:
two stars orbiting common center of mass

Binary Star Systems

most stars are in gravitationally bound multiple systems
binary pairs are most common, but 3 of more star systems exist
observational classes:
visual binaries both stars resolved
can track orbit around each other
astrometric binaries only the brighter star resolved moves in orbit around unseen partner
spectroscopic binaries appear as single point in scope but spectrum shows lines that split into pairs due to different Doppler shifts along sightline
eclipsing binary stars orbit plane seen edge-on when aligned one blocks the other
$\underset{\bullet}{\square}$ binary orbit info + gravity physics \rightarrow star masses!
Q: what gravity force between point masses?

Universal Gravitation: Point Masses

consider point masses m_{1} and m_{2} at separation \vec{r} gravitational force of 2 on 1 :

$$
\begin{equation*}
\vec{F}_{1}=-\frac{G m_{1} m_{2}}{r^{2}} \widehat{r} \tag{5}
\end{equation*}
$$

- inverse square Q : why minus sign?
- $\hat{r}=\vec{r} / r$: unit vector along \vec{r}
force is along line between particle centers: central force

Q: motion in center of mass system?
Q : equation of motion?

Motion in Center of Mass System

PS2: for two interacting particles with no external forces

- center of mass feels no net force
- particles stay on opposite sides of center of mass
- relative motion: particle separation \vec{r} set by

$$
\begin{equation*}
\mu \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F} \tag{6}
\end{equation*}
$$

where

- $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is reduced mass
- \vec{F} is force between particles
so for 2-body gravitational interaction

$$
\begin{align*}
\mu \frac{d^{2} \vec{r}}{d t^{2}} & =-\frac{G m_{1} m_{2}}{r^{2}} \widehat{r} \tag{7}\\
\frac{d^{2} \vec{r}}{d t^{2}} & =-\frac{G\left(m_{1}+m_{2}\right)}{r^{2}} \widehat{r} \tag{8}
\end{align*}
$$

Q: conditions for circular motion?

Kepler Motion: Circular Case

for circular motion

- particle separation unchanged: constant radius $r=a$
- all acceleration is radial and thus centripetal v^{2} / r
- circular speed $v=v_{\text {circ }}=2 \pi a / P=a \omega$ with orbit period P

$$
\begin{align*}
\frac{d^{2} \vec{r}}{d t^{2}} & =-\frac{G\left(m_{1}+m_{2}\right)}{r^{2}} \widehat{r} \tag{9}\\
\frac{v_{\mathrm{circ}}^{2}}{a} & =\frac{G\left(m_{1}+m_{2}\right)}{a^{2}} \tag{10}
\end{align*}
$$

and motion has

- constant circular speed $v_{\text {circ }}$ and angular speed ω
- $4 \pi^{2} a^{3}=G M P^{2}$

Q: generalize to non-circular bound orbits?

Kepler's Laws

in general, orbits of gravitationally bound point masses:
I. orbit in space:
ellipses, with center of mass at one focus
II. orbit speed: sweeps equal areas in equal time
III. period and size related:

$$
\begin{equation*}
4 \pi^{2} a^{3}=G\left(m_{1}+m_{2}\right) P^{2} \tag{11}
\end{equation*}
$$

Q: how does the circular case fit in?
Q: equal mass particle motions about COM? unequal masses?

Motion About Center of Mass

COM positions: $r_{1} / r_{2}=m_{2} / m_{1}$
measure P, and r_{1}, r_{2}
\rightarrow find mass ratio
problem: must measure r's Q : how?

Types of Binary Stars

visual binary
can see both stars!
www: visual binary orbit
eclipsing binary
stars pass in front of each other
can see in light curve:
diagram: light curve \rightarrow get $r s$ from timing of eclipses
spectroscopic binary
periodic Doppler shifts in spectrum
see $\Delta \lambda_{1}, \Delta \lambda_{2}$
\rightarrow radial velocity $v_{r} / c=\Delta \lambda / \lambda_{0}$
then $v_{1}=r_{1} \omega=2 \pi r_{1} / P$
can solve for r !

iClicker Poll: Star Masses

Vote your conscience!
Measure mass M and and Iuminosity L for main sequence stars plot L vs M; each star is one (M, L) point What trend(s) will we find?

A M and L tightly related: L increases with M (more massive $=$ more luminous)

B M and L tightly related: L decreases with M (more massive $=$ less luminous)

C M and L unrelated: large spread in L for each M
D none of the above
Q : what does this mean for $H-R$ diagram?

Star Masses

For main sequence stars:
data show very tight trend: $\log L=\alpha \log M+$ const, $\alpha \approx 3.5$
\rightarrow solve to find $L \propto M^{\alpha}$, and use $L\left(M_{\odot}\right)=L_{\odot}$:

$$
\begin{equation*}
L=\left(\frac{M}{M_{\odot}}\right)^{\alpha} L_{\odot} \approx\left(\frac{M}{M_{\odot}}\right)^{3.5} L_{\odot} \tag{12}
\end{equation*}
$$

very strong increase of L with M !
example: $L\left(2 M_{\odot}\right)=2^{3.5} L_{\odot}=11 L_{\odot}$

Q: which has more total lum?
2 stars at $1 M_{\odot}$, or 1 at $2 M_{\odot}$?

N Lesson for $\mathrm{H}-\mathrm{R}$ diagram: main sequence is really a sequence in mass

