$$
\begin{gathered}
\text { Astro } 404 \\
\text { Lecture } 6 \\
\text { Sept. 9, } 2019
\end{gathered}
$$

Announcements:

- Problem Set 2 posted, due Friday
- iClicker registration link now on Compass

Last time:
thermal/blackbody radiation: laws and stellar thermometry

- Q: Wien's Iaw and color temperature?
- Q: Stefan-Boltzmann law, luminosity, and $T_{\text {eff }}$?
a census of stars: the Hertzsprung-Russell Diagram
- the "Rosetta Stone" of stellar astrophysics
- the central plot of this course-memorize, it's on exams!
- Q: axes? unfortunate conventions?
- Q: main regions? trends?

Hertzsprung-Russell Diagram

plots star L vs T (theorist-friendly)
or absolute magnitude vs color (observer-friendly)
hence also known as color-magnitude diagram $=$ CMD
for a "fair sample" of stars (i.e., not a specially picked cluster) trends emerge
www: Gaia HR diagram for 4+ million stars
note: on Gaia plots, colormap gives number of stars

H-R Diagram: Main Features

* most stars ($\sim 90 \%$) fall on curve: main sequence (including the Sun!); "dwarfs"
* most of the rest: cooler but more luminous-giants
Q : how do we know they are giant?
* a rare few: hot but luminous-supergiants
not rare but dim and hard to find:
* very hot but very low-L objects: white dwarfsn

Q: how do we know they are teeny?
note huge range in luminosity - more than $10^{-4} L_{\odot}<L<10^{4} L_{\odot}$
and in temperature: $3000 \mathrm{~K}<T<30,000 \mathrm{~K}$

HR Diagram Sketch for All Stars

« Temperature T
Q: what does the HR diagram tell us about the Sun?

$H-R$ and the Sun

The Sun on $\mathrm{H}-\mathrm{R}$ diagram:

- found on the main sequence
- position is in the middle of the curve
but the main sequence is where most stars are found!
thus: the Sun is a typical star!
- lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest
${ }^{v}$ most stars are on Main Sequence Q: what is this trying to tell us?

The H-R Diagram and Stellar Evolution

counting stars on the HR diagram:

* 90% of stars are on the Main Sequence
* and most of the rest are giants
these population statistics are due to stellar evolution!
recall: stars have life cycles-birth, midlife, death these are ongoing-we see stars in all stages of life
analogy: hyperintelligent mosquito trying to understand humans but mosquito lifetime \ll human lifetime
- measures height h, weight w for people of all ages at Sox/Cubs/Cards/Bears game
- plots (w, h) for fair sample of people Q : trends? why? Q: which regions most populated? why?
Q : lessons for HR diagram detectives?

The H-R Diagram Encodes Stellar Evolution!

stellar life stages that last the longest time are where most stars on HR will accumulate
lesson:
main sequence is the longest phase in a star's life good news, and Copernican, that Sun is in this phase

Other questions arise:

- why do stars lie on the main sequence?
- what controls their position on the diagram?
- what's up with the giants, supergiants, and white dwarfs?
\downarrow...most of the course is detective work to find answers

Weighing Stars

We saw that clever measurements give a stars

- luminosity
- surface temperature
- radius

What about mass?

For single stars:
mass determination difficult, very indirect but we can find masses for stars in binary systems

Q: how to measure dynamics if both star orbits resolved?
Q : how to measure dynamics if only one orbit resolved? neither?

Binary Star Systems

almost half of all stellar objects are multiple systems
gravitationally bound sets of 2 or more stars
binary pairs are most common (1/3 of all stars)
but $\gtrsim 10 \%$ of stars are in triple systems or higher order!
observational classes:
visual binaries both stars resolved
can track orbit around each other
astrometric binaries only the brighter star resolved moves in orbit around unseen partner
spectroscopic binaries appear as single point in scope
but spectrum shows lines that split into pairs due to different Doppler shifts along sightline eclipsing binary stars orbit plane seen edge-on when aligned one blocks the other

Measuring Star Masses: Binary Systems

for single stars without companions: can't accurately find mass

But can find masses for binary systems:
two stars orbiting common center of mass

binary orbit info + gravity physics \rightarrow star masses!

Q: what gravity force between point masses?

Universal Gravitation: Point Masses

consider point masses m_{1} and m_{2} at separation \vec{r} gravitational force of 2 on 1 :

$$
\begin{equation*}
\vec{F}_{1}=-\frac{G m_{1} m_{2}}{r^{2}} \widehat{r} \tag{1}
\end{equation*}
$$

- inverse square Q : why minus sign?
- $\hat{r}=\vec{r} / r$: unit vector along \vec{r}
force is along line between particle centers: central force

Q: motion in center of mass system?
Q : equation of motion?

Motion in Center of Mass System

PS2: for two interacting particles with no external forces

- center of mass feels no net force
- particles stay on opposite sides of center of mass
- relative motion: particle separation \vec{r} set by

$$
\begin{equation*}
\mu \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F} \tag{2}
\end{equation*}
$$

where

- $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is reduced mass
- \vec{F} is force between particles
so for 2-body gravitational interaction

$$
\begin{align*}
\mu \frac{d^{2} \vec{r}}{d t^{2}} & =-\frac{G m_{1} m_{2}}{r^{2}} \widehat{r} \tag{3}\\
\frac{d^{2} \vec{r}}{d t^{2}} & =-\frac{G\left(m_{1}+m_{2}\right)}{r^{2}} \widehat{r} \tag{4}
\end{align*}
$$

Q: conditions for circular motion?

Kepler Motion: Circular Case

for circular motion

- particle separation unchanged: constant radius $r=a$
- all acceleration is radial and thus centripetal v^{2} / r
- circular speed $v=v_{\text {circ }}=2 \pi a / P=a \omega$
with orbit period P

$$
\begin{align*}
\frac{d^{2} \vec{r}}{d t^{2}} & =-\frac{G\left(m_{1}+m_{2}\right)}{r^{2}} \widehat{r} \tag{5}\\
\frac{v_{\mathrm{circ}}^{2}}{a} & =\frac{G\left(m_{1}+m_{2}\right)}{a^{2}} \tag{6}
\end{align*}
$$

and motion has

- constant circular speed $v_{\text {circ }}$ and angular speed ω
- $4 \pi^{2} a^{3}=G M P^{2}$

Q: generalize to non-circular bound orbits?

Newtonian Orbits: Kepler's Laws

in general, orbits of gravitationally bound point masses
I. in space:
orbits are ellipses, with center of mass at one focus
II. speed: orbits sweep equal areas in equal time
III. period and size related:

$$
\begin{equation*}
4 \pi^{2} a^{3}=G\left(m_{1}+m_{2}\right) P^{2} \tag{7}
\end{equation*}
$$

Q: how does the circular case fit in?
$\stackrel{\leftrightarrows}{\perp}$
Q : equal mass particle motions about COM? unequal masses?

Motion About Center of Mass

COM positions: $r_{1} / r_{2}=m_{2} / m_{1}$ (PS2)
star separation: $r=r_{1}+r_{2}$
measure P, and r_{1}, r_{2}
\rightarrow find mass ratio
© problem: must measure r 's
Q: how to do this for visual binaries? spectroscopic?

Types of Binary Stars

visual binary
can see both stars! can measure each distance from COM www: visual binary orbit
eclipsing binary
stars pass in front of each other
can see this in flux vs time: light curve www: examples
\rightarrow get r from width of eclipse features Q : how?
spectroscopic binary
periodic Doppler shifts in spectrum
see $\Delta \lambda_{1}, \Delta \lambda_{2}$
\rightarrow radial velocity $v_{r} / c=\Delta \lambda / \lambda_{0}$
9I
then $v_{1}=r_{1} \omega=2 \pi r_{1} / P$
can solve for r !

Director's Cut Extras

Doppler Effect

consider a moving light source

- moves at constant speed v
- emits light of wavelength λ_{em} as measured in emitter's rest frame

Each wave crest propagates spherically from emission point but emission points move, so...
Q : how does this affect observed wavelength $\lambda_{\text {obs }}$?
Q: does the effect depend on viewing angle? how or why not?

Wave Crests from Moving Emitter

in front of emitter: wave crests "bunch up"
\rightarrow approaching objects observed at smaller wavelength
\rightarrow shorter λ : "blue shift"
behind emitter: wave crests "stretched out"
\rightarrow receding objects observed at longer wavelength
\rightarrow Ionger λ : "red shift"
shift depends only on
relative motion in radial direction ("line of sight")

$$
\begin{equation*}
\frac{\lambda_{\mathrm{obs}}-\lambda_{\mathrm{em}}}{\lambda_{\mathrm{em}}}=\frac{\Delta \lambda}{\lambda}=\frac{v_{r}}{c} \tag{8}
\end{equation*}
$$

where $v_{r}>0$ means moving away

Observer's Scorecard

Doppler effect: speed $\leftrightarrow \lambda$ shift
redshifts/blueshifts \rightarrow speedometer
namely: measure $\lambda_{\text {obs }}$, know $\lambda_{\mathrm{em}} \rightarrow$ find $v_{r}=\frac{\Delta \lambda}{\lambda} c$
Q: but how does it work in practice?
how do you know a line is shifted?

Kepler I Generalized: Law of Ellipses

for a two-body gravitating system
each body's orbit is an ellipse with the center of mass at one focus

$$
L_{1}+L_{2}=\text { constant }
$$

Ellipse Anatomy

- two foci
- semi-major axis a
- focal length c
- semi-minor axis

$$
b=\sqrt{a^{2}-c^{2}}
$$

any ellipse fully characterized by:
$\stackrel{\sim}{\omega} a$ and eccentricity $e=c / a$
Q : what do we get for $e=0 ? e=1 ?$

