Astro 404 Lecture 10 Sept. 18, 2019

Announcements:

• Problem Set 3 due Friday

instructor office hours: today 11am-noon or by appt

Last time: stars as self-gravitating spheres

Q: gravity field of a sphere at r?

- Q: order of magnitude of gravitational potential energy for M, R?
- Q: what keeps the Sun from collapsing to a black hole?

 \vdash

Uniform Pressure Star: Fails Uniformly!

consider a star with *uniform pressure P throughout*

for a *shell of area* Apressure force from below: $F_{up} = PA$ this acts upward, oppose gravity. Yay!

but: above the shell, pressure force: $F_{down} = PA$ same magnitude, opposite direction!

in this situation: $F_{up} - F_{down} = (P_{up} - P_{down})A = 0$ \sim the pressure forces cancel! pressure has no net effect!

under uniform pressure, no net force!

real life example: humans!

atmospheric pressure $P_{\rm atm} \simeq 10^5 \ {\rm Newton}/{\rm m}^2 = 10^5 \ {\rm Pa}$

- force on front of body $\approx 10^5$ Newton!
- would send you flying if unbalanced!
- \bullet but uniform pressure horizontally \rightarrow forces cancel

yet we know in real life that

pressure can provide support, including against gravity!

- balloon: inward elastic force vs outward P
- car tire: pressure holds up car's entire weight!

 $_{\omega}$ Q: where did we go wrong here? how to fix this?

Nonuniform Pressure: Net Force Emerges

a net pressure force *is* possible if pressure is *nonuniform* inside the star that is: $P(r) \neq const$

pressure forces on gas shell at $(r, r + \delta r)$

- from below, upward pressure $P_{\text{up}} = P(r)$
- from above $P_{\text{down}} = P(r + \delta r)$ net upward force is

$$F_{\text{net,up}} = (P_{\text{up}} - P_{\text{down}}) A$$

= $[P(r) - P(r + \delta r)] A$ (1)
= $-\frac{dP}{dr} \delta r A$ (2)

nonzero if pressure not constant! Q: why the sign? what does this mean physically?

Q: mathematical condition for a stationary star?

Hydrostatic Equilibrium

net pressure force on shell:

$$F_{\text{net,up}} = -\frac{dP}{dr} \ \delta r \ A \tag{3}$$

upward direction if dP/dr < 0: \rightarrow pressure decreases outward, increases inward so on Earth, air is thin at altitude!

net gravity force = weight of shell:

$$F_{\text{weight}} = \delta m \ g(r) = \rho(r) \ g(r) \ A \delta r \tag{4}$$

when forces balance: star attains hydrostatic equilibrium: pressure gradient exactly balances downward gravity for every mass shell in star:

$$F_{\text{pressure}} = F_{\text{weight}}$$
(5)
$$\frac{dP}{dr} A \,\delta r = \rho(r) \,g(r) \,A \,\delta r$$
(6)

С

shell volume cancels!

The Mighty Equation of Hydrostatic Equilibrium

for a spherical star in hydrostatic equilibrium

$$\frac{dP}{dr} = -g\rho = -\frac{G m(r) \rho(r)}{r^2}$$

Lesson:

a star's mechanical structure $\rho(r), m(r)$ intimately related to thermal structure via pressure profile P(r)

Q: how to solve for P(r)? boundary conditions?

Stellar Pressure

hydrostatic equilibrium: pressure gradient balances gravity

$$\frac{dP}{dr} = -\frac{G \ m(r) \ \rho(r)}{r^2} \tag{7}$$

integrate to solve for pressure

$$\int_0^r \frac{dP}{dr} dr = P(r) - P(0) \tag{8}$$

$$= -\int_{0}^{r} \frac{G \ m(r) \ \rho(r)}{r^{2}} dr \qquad (9)$$
(10)

integration requires *boundary conditions*

- $P(0) = P_{C}$ pressure at center: **central pressure**
- \neg P(R) pressure at surface

iClicker Poll: Surface Pressure

Consider a star, mass M and radius R, in hydrostatic equilibrium

What what is pressure P(R) at surface boundary?

- P(R) < 0
- $\mathsf{B} \quad P(R) = \mathsf{0}$
- $\mathsf{C} \quad P(R) > \mathsf{0}$

none of the above

Pressure at the Extremes

if star fully in hydrostatic equilibrium pressure gradient balances gravity: $dP/dr = -Gm\rho/r^2$

- outer boundary defined by $\rho(R) = 0$
- so there, dP/dr = 0: pressure minimized $\rightarrow P(R) = 0$

thus the integration

$$P(R) - P(0) = -\int_0^R \frac{G \ m(r) \ \rho(r)}{r^2} dr$$
(11)

gives the *central pressure*

$$P_{\rm C} = P(0) = \int_0^R \frac{G \ m(r) \ \rho(r)}{r^2} dr \tag{12}$$

and thus

$$P(r) = P_c - \int_0^r \frac{G \ m(r) \ \rho(r)}{r^2} dr$$
(13)

9

pressure drops monotonically from the central value

Hydrostatic Equilibrium: Mass Coordinate Picture

recall we can label star interior via radius but also by mass coordinate $dm = 4\pi r^2 \rho dr$ where $m \in [0, M]$, and where r(m) varies for different density profiles ρ

in these coordinates:

$$\frac{dP}{dr} = \frac{dP}{dm} \frac{dm}{dr} = 4\pi r^2 \frac{dP}{dm}$$
(14)

and so hydrostatic equilibrium $dP/dr = -G\rho m/r^2$ gives

$$\frac{dP}{dm} = -\frac{Gm}{4\pi r^4}$$
(15)
$$P = P_{\rm C} - \int_0^M \frac{Gm \ dm}{4\pi r^4}$$
(16)

 $\stackrel{\text{\tiny 6}}{\sim}$ Q: order of magnitude of central pressure $P_{\rm C}$?

Central Pressure: Order of Magnitude

order of magnitude:

- find scaling with parameters M, R, and constants like G
- ignore dimensionless constants like 2, π , etc

estimate *central pressure:*

$$P_{\rm C} \sim \frac{\text{characteristic force}}{\text{characteristic area}}$$
(17)
$$\sim \frac{M g(R)}{R^2} = \frac{GM^2/R^2}{R^2} = \frac{GM^2}{R^4}$$
(18)

or try characteristic energy GM^2/R per volume R^3 : same answer!

or estimate from integral: same answer

$$P_{\rm C} = \frac{1}{4\pi} \int_0^M \frac{Gm \ dm}{r^4} \sim \frac{GM^2}{R^4}$$
(19)

11

Q: is the answer physically reasonable-scaling with M, R?

Limits to Pressure

central pressure exact expression

$$P_{\rm C} = \frac{1}{4\pi} \int_0^M \frac{Gm \ dm}{r^4}$$
(20)

note denominator $r^4 < R^4$; use this to set a *strict lower bound*

$$P_{\rm C} > P_{\rm C,min} = \frac{1}{4\pi} \int_0^M \frac{Gm \ dm}{R^4} = \frac{GM^2}{8\pi R^4}$$
 (21)

order of magnitude estimate with $1/8\pi$ factor

Q: for which stars is P_c smallest? largest?

12

Central Pressure of Stars

plug in numbers for mass and radius:

$$\begin{array}{rl} P_{\rm c,min} & \stackrel{{\rm Sun}}{=} & 5 \times 10^{13} \ {\rm N/m^2} = 4 \times 10^8 \ {\rm atm} \\ & \stackrel{{\rm Sirius}}{=} {\rm B} & 9 \times 10^{21} \ {\rm N/m^2} = 10^{17} \ {\rm atm} \ {\rm white} \ {\rm dwarf} \end{array}$$

- solar central pressure huge!
- white dwarfs have similar mass but much smaller billions of times larger still!
- giants and supergiants: limit much smaller

iClicker Poll: Thermal Physics and You

Vote your conscience!

What thermal physics have you seen?

- A thermal physics? haven't had the pleasure at all
- B yes for ideal gases, but not much more
- C I'm a PHYS 213 alum. But don't remind me.
- D I'm a PHYS 213 alum. Looooved it!
- E I'm a PHYS 427 alum thermal Jedi!

Ideal Gases

ideal gas: free particles in thermal equilibrium *particles in constant random motion in all directions*

ideal gas pressure P, temperature T, and density ρ not all independent: related by **ideal gas equation of state**

$$PV = N kT \tag{22}$$

for a fluid element with volume V and number N of particles note: in physics and astronomy, N counts particles one by one but chemists count in units of moles, which gives $PV = N_{mole} \mathcal{R}T$

k: Boltzmann's constant

Ideal Gas Equation of State

thus we can write

$$P = n \, kT \tag{23}$$

with n the *number density*: (number per unit volume) of gas particles

Q: how is this related to the mass density ρ of the gas?

Ideal Gases: Mass and Energy Densities

for gas fluid element of mass M, with particle number N mass density

$$\rho = \frac{M}{V} = \frac{MN}{NV} = m_{g}n \tag{24}$$

where m_g is average mass of one gas particle

so ideal gas equation of state is

$$P = n \ kT = \frac{\rho \ kT}{m_{\rm q}} \tag{25}$$

so pressure depends on **both** density and temperature: $P\propto
ho T$

□ Q: what about ideal gas internal energy—form? value?