```
Astro 404
Lecture 10
Sept. 18, 2019
```

Announcements:

- Problem Set 3 due Friday instructor office hours: today 11am-noon or by appt

Last time: stars as self-gravitating spheres
Q : gravity field of a sphere at r ?
Q: order of magnitude of gravitational potential energy for M, R ?
Q: what keeps the Sun from collapsing to a black hole?

Uniform Pressure Star: Fails Uniformly!

consider a star with uniform pressure P throughout
for a shell of area A
pressure force from below: $F_{\text {up }}=P A$ this acts upward, oppose gravity. Yay!
but: above the shell, pressure force: $F_{\text {down }}=P A$
same magnitude, opposite direction!

in this situation: $F_{\text {up }}-F_{\text {down }}=\left(P_{\text {up }}-P_{\text {down }}\right) A=0$
n the pressure forces cance!!
pressure has no net effect!
under uniform pressure, no net force!
real life example: humans!
atmospheric pressure $P_{\text {atm }} \simeq 10^{5}$ Newton $/ \mathrm{m}^{2}=10^{5} \mathrm{~Pa}$

- force on front of body $\approx 10^{5}$ Newton!
- would send you flying if unbalanced!
- but uniform pressure horizontally \rightarrow forces cancel
yet we know in real life that pressure can provide support, including against gravity!
- balloon: inward elastic force vs outward P
- car tire: pressure holds up car's entire weight!
w Q: where did we go wrong here? how to fix this?

Nonuniform Pressure: Net Force Emerges

a net pressure force is possible if pressure is nonuniform inside the star that is: $P(r) \neq$ const
pressure forces on gas shell at $(r, r+\delta r)$

- from below, upward pressure $P_{\text {up }}=P(r)$
- from above $P_{\text {down }}=P(r+\delta r)$ net upward force is

$$
\begin{align*}
F_{\text {net,up }} & =\left(P \text { up }-P_{\text {down }}\right) A \\
& =[P(r)-P(r+\delta r)] A \tag{1}\\
& =-\frac{d P}{d r} \delta r A \tag{2}
\end{align*}
$$

nonzero if pressure not constant!
\& Q: why the sign? what does this mean physically?
Q: mathematical condition for a stationary star?

Hydrostatic Equilibrium

net pressure force on shell:

$$
\begin{equation*}
F_{\text {net,up }}=-d P / d r \delta r A \tag{3}
\end{equation*}
$$

upward direction if $d P / d r<0: \quad \rightarrow$ pressure decreases outward, increases inward so on Earth, air is thin at altitude!
net gravity force $=$ weight of shell:

$$
\begin{equation*}
F_{\text {weight }}=\delta m g(r)=\rho(r) g(r) A \delta r \tag{4}
\end{equation*}
$$

when forces balance: star attains hydrostatic equilibrium: pressure gradient exactly balances downward gravity for every mass shell in star:

$$
\begin{align*}
F_{\text {pressure }} & =F_{\text {weight }} \tag{5}\\
-\frac{d P}{d r} A \delta r & =\rho(r) g(r) A \delta r \tag{6}
\end{align*}
$$

shell volume cancels!

The Mighty Equation of Hydrostatic Equilibrium

for a spherical star in hydrostatic equilibrium

$$
\frac{d P}{d r}=-g \rho=-\frac{G m(r) \rho(r)}{r^{2}}
$$

Lesson:
a star's mechanical structure $\rho(r), m(r)$ intimately related to thermal structure via pressure profile $P(r)$

Q: how to solve for $P(r)$? boundary conditions?

Stellar Pressure

hydrostatic equilibrium: pressure gradient balances gravity

$$
\begin{equation*}
\frac{d P}{d r}=-\frac{G m(r) \rho(r)}{r^{2}} \tag{7}
\end{equation*}
$$

integrate to solve for pressure

$$
\begin{align*}
\int_{0}^{r} \frac{d P}{d r} d r & =P(r)-P(0) \tag{8}\\
& =-\int_{0}^{r} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{9}
\end{align*}
$$

integration requires boundary conditions

- $P(0)=P_{\mathrm{c}}$ pressure at center: central pressure
- $P(R)$ pressure at surface

iClicker Poll: Surface Pressure

Consider a star, mass M and radius R, in hydrostatic equilibrium

What what is pressure $P(R)$ at surface boundary?

A $P(R)<0$
B $\quad P(R)=0$
C $P(R)>0$

D none of the above

Pressure at the Extremes

if star fully in hydrostatic equilibrium pressure gradient balances gravity: $d P / d r=-G m \rho / r^{2}$

- outer boundary defined by $\rho(R)=0$
- so there, $d P / d r=0$: pressure minimized $\rightarrow P(R)=0$
thus the integration

$$
\begin{equation*}
P(R)-P(0)=-\int_{0}^{R} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{11}
\end{equation*}
$$

gives the central pressure

$$
\begin{equation*}
P_{\mathrm{C}}=P(0)=\int_{0}^{R} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{12}
\end{equation*}
$$

and thus

$$
\begin{equation*}
P(r)=P_{c}-\int_{0}^{r} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{13}
\end{equation*}
$$

pressure drops monotonically from the central value

Hydrostatic Equilibrium: Mass Coordinate Picture

recall we can label star interior via radius
but also by mass coordinate $d m=4 \pi r^{2} \rho d r$
where $m \in[0, M]$, and where $r(m)$ varies for different density profiles ρ
in these coordinates:

$$
\begin{equation*}
\frac{d P}{d r}=\frac{d P}{d m} \frac{d m}{d r}=4 \pi r^{2} \frac{d P}{d m} \tag{14}
\end{equation*}
$$

and so hydrostatic equilibrium $d P / d r=-G \rho m / r^{2}$ gives

$$
\begin{align*}
\frac{d P}{d m} & =-\frac{G m}{4 \pi r^{4}} \tag{15}\\
P & =P_{\mathrm{C}}-\int_{0}^{M} \frac{G m d m}{4 \pi r^{4}} \tag{16}
\end{align*}
$$

Q : order of magnitude of central pressure P_{C} ?

Central Pressure: Order of Magnitude

order of magnitude:

- find scaling with parameters M, R, and constants like G
- ignore dimensionless constants like $2, \pi$, etc
estimate central pressure:

$$
\begin{align*}
P_{C} & \sim \frac{\text { characteristic force }}{\text { characteristic area }} \tag{17}\\
& \sim \frac{M g(R)}{R^{2}}=\frac{G M^{2} / R^{2}}{R^{2}}=\frac{G M^{2}}{R^{4}} \tag{18}
\end{align*}
$$

or try characteristic energy $G M^{2} / R$ per volume R^{3} : same answer!
or estimate from integral: same answer

$$
\begin{equation*}
P_{\mathrm{C}}=\frac{1}{4 \pi} \int_{0}^{M} \frac{G m d m}{r^{4}} \sim \frac{G M^{2}}{R^{4}} \tag{19}
\end{equation*}
$$

Q: is the answer physically reasonable-scaling with M, R ?

Limits to Pressure

central pressure exact expression

$$
\begin{equation*}
P_{\mathrm{C}}=\frac{1}{4 \pi} \int_{0}^{M} \frac{G m d m}{r^{4}} \tag{20}
\end{equation*}
$$

note denominator $r^{4}<R^{4}$; use this to set a strict lower bound

$$
\begin{equation*}
P_{\mathrm{C}}>P_{\mathrm{C}, \min }=\frac{1}{4 \pi} \int_{0}^{M} \frac{G m d m}{R^{4}}=\frac{G M^{2}}{8 \pi R^{4}} \tag{21}
\end{equation*}
$$

order of magnitude estimate with $1 / 8 \pi$ factor

Q: for which stars is P_{c} smallest? largest?

Central Pressure of Stars

plug in numbers for mass and radius:

$$
\begin{array}{ll}
P_{\mathrm{c}, \min } & \stackrel{\text { Sun }}{=} 5 \times 10^{13} \mathrm{~N} / \mathrm{m}^{2}=4 \times 10^{8} \text { atm } \\
& \text { Sirius } \mathrm{B} \\
& 9 \times 10^{21} \mathrm{~N} / \mathrm{m}^{2}=10^{17} \text { atm white dwarf }
\end{array}
$$

- solar central pressure huge!
- white dwarfs have similar mass but much smaller billions of times larger still!
- giants and supergiants: limit much smaller
iClicker Poll: Thermal Physics and You

Vote your conscience!
What thermal physics have you seen?
A thermal physics? haven't had the pleasure at all
B yes for ideal gases, but not much more
C I'm a PHYS 213 alum. But don't remind me.

D I'm a PHYS 213 alum. Looooved it!
$\stackrel{\ddagger}{\ddagger}$ I'm a PHYS 427 alum - thermal Jedi!

Ideal Gases

ideal gas: free particles in thermal equilibrium particles in constant random motion in all directions
ideal gas pressure P, temperature T, and density ρ not all independent: related by ideal gas equation of state

$$
\begin{equation*}
P V=N k T \tag{22}
\end{equation*}
$$

for a fluid element with volume V and number N of particles note: in physics and astronomy, N counts particles one by one but chemists count in units of moles, which gives $P V=\mathcal{N}_{\text {mole }} \mathcal{R} T$

出 k : Boltzmann's constant

Ideal Gas Equation of State

thus we can write

$$
\begin{equation*}
P=n k T \tag{23}
\end{equation*}
$$

with n the number density: (number per unit volume) of gas particles
Q : how is this related to the mass density ρ of the gas?

Ideal Gases: Mass and Energy Densities

for gas fluid element of mass M, with particle number N mass density

$$
\begin{equation*}
\rho=\frac{M}{V}=\frac{M}{N} \frac{N}{V}=m_{\mathrm{g}} n \tag{24}
\end{equation*}
$$

where m_{g} is average mass of one gas particle
so ideal gas equation of state is

$$
\begin{equation*}
P=n k T=\frac{\rho k T}{m_{\mathrm{g}}} \tag{25}
\end{equation*}
$$

so pressure depends on both density and temperature: $P \propto \rho T$
$\stackrel{\checkmark}{\vee}$: what about ideal gas internal energy-form? value?

