> Astro 404
> Lecture 11
> Sept. 20, 2019

Announcements:

- Problem Set 3 due online 5pm today
- Problem Set 4 due next Friday

Last time:

- hydrostatic equilibrium

Q: why hydro? why static? why equilibrium?
Q: what's the mighty equation?
Q: what would the Sun do if gravity switched off $(G=0)$?

- ideal gas equation of state
Q : mighty equation? in terms of mass density ρ ?

Ideal Gas: Macro vs Micro Pictures

gases on microscopic scale
a swarm of particles, for example atoms or molecules

- gas particles have empty space between them not packed together as in liquid or solid
- gas particles are in constant random motion act as free particles (constant velocity) between collisions
- collide elastically with each other, container walls (if any) exchange energy \& momentum \rightarrow distribution of speeds
N on macroscopic scales (i.e., how we see things) particle motions perceived as temperature

iClicker Poll: Gas Particle Speeds

consider a parcel of gas:

- macroscopically, gas is at rest (not moving/blowing)
- at room temperature T
in this gas:
the average particle velocity \vec{v} and speed $v=|\vec{v}|$ are:

A $\quad \vec{v}=0$ and $v=0$

B $\quad \vec{v}=0$ and $v>0$

C $\quad \vec{v} \neq 0$ and $v=0$
ω
D $\quad \vec{v} \neq 0$ and $v>0$
average particle velocity vector vanishes: $\langle\vec{v}\rangle=0$ why? not because particles are still
rather: equal numbers with $v_{x}>0$ vs $v_{x}<0 \rightarrow$ averages to zero otherwise: gas would have net v_{x}, wouldn't be at rest!
note microscopic-macroscopic (particle-bulk) correspondence: micro: equal probabilities for particle $\vec{v}>0$ and $\vec{v}<0$ macro: corresponds to bulk gas speed $\vec{u}_{\text {gas }}=0$
since particles are moving, speeds $\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle>0$ \rightarrow average kinetic energy of each gas particle is nonzero

Ideal Gas: Microscopic Picture

consider ideal gas of particles with mass m_{g} in cubic box of size L and volume $V=L^{3}$
a particle of speed v_{x} bounces between $y z$ walls

- bounce return time for same wall: $\delta t=2 L / v_{x}$
- bounces are elastic: $v_{x}^{\text {after }}=-v_{x}^{\text {before }}$
so $\delta v_{x}=v_{x}^{\text {after }}-v_{x}^{\text {before }}=2 v_{x}$, and $\delta p_{x}=2 m_{\mathrm{g}} v_{x}$

so collision changes particle momentum!
this exerts force on wall

$$
\begin{equation*}
F_{x}=\frac{\delta p_{x}}{\delta t}=\frac{2 m_{\mathrm{g}} v_{x}}{2 L / v_{x}}=\frac{m \mathrm{~g} v_{x}^{2}}{L} \tag{1}
\end{equation*}
$$

$\checkmark \quad Q$: force per unit area in single particle collision?
Q: total force per area due to N particles?
for particle of mass m_{g} and speed v_{x} :
force per unit area of wall

$$
\begin{equation*}
\frac{F_{x}}{A}=\frac{F_{x}}{L^{2}}=\frac{m_{\mathrm{g}} v_{x}^{2}}{L^{3}}=\frac{m_{\mathrm{g}} v_{x}^{2}}{V} \tag{2}
\end{equation*}
$$

total force per area: pressure!
sums over all N particles

$$
\begin{equation*}
P=\sum_{i=1}^{N} \frac{m_{\mathbf{g}} v_{i, x}^{2}}{V}=N \frac{m_{\mathrm{g}}\left\langle v_{x}^{2}\right\rangle}{V} \tag{3}
\end{equation*}
$$

where $\left\langle v_{x}^{2}\right\rangle$ means average v_{x}^{2} over all particles
gas speed distribution is isotropic $=$ same in all directions Q: what does this means for $\left\langle v_{x}^{2}\right\rangle$ vs v_{y}^{2} ? for $v_{\text {tot }}^{2}$?

Ideal Gas: Equation of State Emerges!

if gas speeds are isotropic $=$ no preferred direction, then

- $\left\langle v_{x}^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle$
- $\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}+v_{y}^{2}+v_{z}^{3}\right\rangle=3\left\langle v_{x}^{2}\right\rangle$
and so the pressure is

$$
\begin{equation*}
P=N \frac{m_{\mathrm{g}}\left\langle v^{2}\right\rangle / 3}{V} \tag{4}
\end{equation*}
$$

woo hoo! our microscopic collision theory shows

- $P \propto 1 / V$ check! $Q:$ microscopic physical reason?
- $P \propto N$ check! Q : microscopic physical reason?
, to fully match ideal gas equation of state what does this mean about temperature?
microscopic theory gives ideal gas pressure

$$
\begin{equation*}
P=N \frac{m_{\mathrm{g}}\left\langle v^{2}\right\rangle / 3}{V} \tag{5}
\end{equation*}
$$

- $P \propto N$: more particles \rightarrow collisions more frequent
- $P \propto 1 / V:$ more $V \rightarrow$ collisions less frequent
and so to match ideal gas law $P=N k T / V$ we find

$$
\begin{equation*}
k T=\frac{1}{3} m_{\mathrm{g}}\left\langle v^{2}\right\rangle \tag{6}
\end{equation*}
$$

temperature proportional to square of average particle speed
typical gas particle speed (root-mean-square):

$$
\begin{equation*}
v_{\mathrm{rms}}=\sqrt{\frac{3 k T}{m_{\mathrm{g}}}} \tag{7}
\end{equation*}
$$

hotter gas \leftrightarrow faster particles

Ideal Gas Internal Energy

internal energy sum all gas particle

- kinetic energy, plus
- rotational energy if any
for a monatomic ideal gas (non-rotating particles) with N particles at temperature T non-relativistic internal energy is

$$
\begin{equation*}
U=\frac{1}{2} N m\left\langle v^{2}\right\rangle=\frac{3}{2} N k T \tag{8}
\end{equation*}
$$

ideal internal energy only depends on temperature T internal energy also known as "thermal energy"

Q: what is energy per unit volume?

Ideal Gas Energy Density

ideal gas internal energy

$$
\begin{equation*}
U=\frac{3}{2} N k T=\frac{3}{2} P V \tag{9}
\end{equation*}
$$

so ideal gas inter energy per unit volume
or internal energy density, for monatomic gas

$$
\begin{equation*}
\varepsilon=\frac{U}{V}=\frac{3}{2} n k T=\frac{3}{2} P \tag{10}
\end{equation*}
$$

will be useful to define internal energy per unit mass

$$
\begin{equation*}
u=\frac{U}{N m_{\mathrm{g}}}=\frac{\varepsilon}{\rho}=\frac{3}{2} \frac{k T}{m_{\mathrm{g}}} \tag{11}
\end{equation*}
$$

Stars Average Temperature

a star's total internal energy

$$
\begin{equation*}
U=\int \varepsilon d V=\int \frac{\varepsilon}{\rho} \rho d V=\int u d m=\langle u\rangle M \tag{12}
\end{equation*}
$$

where $\langle u\rangle$ is average internal energy per unit mass
but for ideal gas, $u=3 / 2 P / \rho=3 k T / 2 m_{\mathrm{g}}$, so

$$
\begin{equation*}
U=\frac{3}{2} \frac{M}{m_{\mathrm{g}}}\langle k T\rangle \tag{13}
\end{equation*}
$$

and thus average temperature is

$$
\begin{equation*}
\langle k T\rangle=\frac{2}{3} \frac{m_{\mathrm{g}} U}{M} \tag{14}
\end{equation*}
$$

Stellar Energy Budget: Equilibrium

hydrostatic equilibrium condition

$$
\begin{equation*}
d P=-\frac{G m(r)}{r^{2}} \rho(r) d r \tag{15}
\end{equation*}
$$

multiply by $V=4 p i / 3 r^{3}$ and integrate left side:

$$
\begin{equation*}
\int_{0}^{R} V d P=[P V]_{0}^{R}-\int_{0}^{R} P d V \tag{16}
\end{equation*}
$$

but $[P V]_{0}^{R} Q$: why?, so we have

$$
\begin{equation*}
\int_{0}^{R} V d P=-\int_{0}^{R} P d V=-\frac{2}{3} \int_{0}^{R} \varepsilon d V=-\frac{2}{3} \int_{0}^{R} \varepsilon d V=-\frac{2}{3} U \tag{17}
\end{equation*}
$$

righthand side:

$$
\begin{equation*}
-\frac{1}{3} \int \frac{G m}{r} \rho 4 \pi r^{2} d r=-\frac{1}{3} \int \frac{G m d m}{r}=\frac{1}{3} \Omega \tag{18}
\end{equation*}
$$

The Virial Theorem

for an ideal gas in hydrostatic equilibrium:

$$
\begin{equation*}
U=-\frac{1}{2} \Omega \tag{19}
\end{equation*}
$$

internal energy is minus half gravitational potential energy: the Virial theorem
this is a powerful tool for understanding stellar equilibria

Virial application I: average stellar temperature

$$
\begin{align*}
\langle k T\rangle & =\frac{2}{3} \frac{m_{\mathrm{g}} U}{M}=\frac{1}{3} \frac{m_{\mathrm{g}} \Omega}{M} \tag{20}\\
& =\frac{1}{3} \frac{m_{\mathrm{g}}}{M} \int \frac{G m d m}{r} \tag{21}
\end{align*}
$$

Q : order of magnitude for star of mass M, radius R ?

Average Temperature

to order of magnitude,

$$
\begin{equation*}
\langle k T\rangle=\frac{1}{3} \frac{m_{\mathrm{g}}}{M} \int \frac{G m d m}{r} \sim \frac{G M m_{\mathrm{g}}}{R} \tag{22}
\end{equation*}
$$

Q: check-reasonable dependence on M ? on R ?
plug in numbers for the Sun:

$$
\begin{align*}
\left\langle k T_{\odot}\right\rangle & \sim 10^{3} \mathrm{eV}=1 \mathrm{keV} \tag{23}\\
\left\langle T_{\odot}\right\rangle & \sim 10^{7} \mathrm{~K}=10 \mathrm{MK} \tag{24}
\end{align*}
$$

where $\mathrm{eV}=$ electron volt $=e \cdot 1$ Volt $=1.602 \times 10^{-19} \mathrm{Joule}$
Q : comparison with surface temperature?
$\stackrel{\perp}{ } \quad$: implications?

Lessons: Stellar Interior vs Surface Temperature

for the Sun: $\left\langle T_{\odot}\right\rangle \sim 10 M K$
compare to surface effective $T_{\text {eff }} \approx 5800 \mathrm{~K}$

- surface $T_{\text {eff }}$ not representative of stellar average!
- stellar interiors much hotter than surface!
in energy units: temperature $k T \gg 1 \mathrm{eV}$ atomic binding energies atoms are unbound inside of stars
\rightarrow most of stellar interiors are ionized plasma!

Virial Theorem Application II: Total Energy

Virial theorem relates

- gravitational potential energy Ω, and
- internal energy U
thus the total energy in a star under hydrostatic equilibrium is

$$
\begin{equation*}
E_{\mathrm{tot}}=U+\Omega=\frac{1}{2} \Omega=-\frac{1}{2} \int \frac{G m d m}{r} \tag{25}
\end{equation*}
$$

Q: sign of Ω ? sign of $E_{\text {tot }}$? significance?
Q: what if system loses energy (spoiler: radiates) ?

Implications of the Virial Theorem

Virial theorem: in equilibrium
gravitational potential energy and internal energy are related

$$
\begin{equation*}
E_{\mathrm{tot}}=U+\Omega=\frac{1}{2} \Omega \tag{26}
\end{equation*}
$$

- $\Omega=-\int \mathrm{Gm} /, d m / r<0$: gravitational binding
- $U=-\Omega / 2$: more bound \rightarrow more internal energy
- $E_{\text {tot }}=\Omega / 2=-U<0$: system is gravitationally bound i.e., must supply energy to unbind and move to $r \rightarrow \infty$
if system loses energy while keeping in equilibrium
$E_{\text {tot }}$ gets smaller \rightarrow more negative, and so
- $|\Omega|$ larger Q : and so?
$2 I$
- U larger \rightarrow more internal energy Q : why is this bizarre?
a star in hydrostatic equilibrium that gradually loses energy:
- must increase $|\Omega| \sim G M^{2} / R$
\rightarrow must become more compact!
- also must increase internal energy U
but $\langle T\rangle \propto U$: star must get hotter!

stars get hotter when they lose energy!?!

stars have "negative specific heat"
but not so strange:
if stars become more compact, gravity stronger
$\underset{\infty}{ }$ so must heat to increase pressure and maintain hydrostatic equilb.

Ideal Gas: Ultra-Relativistic Case

thus far implicitly assumed gas speeds are non-relativistic

- speeds $v \ll c$ and $p \ll m_{\mathrm{g}} c$
- so $p^{2} / m_{\mathrm{g}} \ll m_{\mathrm{g}} c^{2}$ and thus $k T \ll m_{\mathrm{g}} c^{2}$
now consider opposite limit: ultra-relativistic particles
- $v \approx c$ or even $v=c$ Q: examples?
- relativistic momentum $p \gg m_{g} c$
- energy $E=\sqrt{(c p)^{2}+\left(m_{\mathrm{g}} c^{2}\right)^{2}} \approx c p$
revisit microscopic pressure derivation

$$
\begin{equation*}
P_{\mathrm{ur}}=\frac{N\langle p v\rangle}{3 V} \approx \frac{1}{3} \frac{N\langle E\rangle}{V}=\frac{1}{3} \frac{U_{\mathrm{ur}}}{V} \tag{27}
\end{equation*}
$$

and thus for a relativistic gas $P V=U / 3$, and energy density is

$$
\begin{equation*}
\varepsilon_{\mathrm{ur}}=3 P_{\mathrm{ur}} \tag{28}
\end{equation*}
$$

