Astro 404 Lecture 13 Sept. 25, 2019

Announcements:

• Problem Set 4 due Friday

instructor office hours: Today 11am-noon or by appt

• PS 4 typos:

Q2f should read: ${}^{4}\text{He} = 2p, 2n$ Q3c should read: s = -2, and eq. (6) is correct also, FAQ responses posted on Compass HW Discussion

Last time: Virial theorem

, Q: what's that? when does it apply? Lessons?

Virial Theorem: Lessons

equilibrium links thermal and gravitational energy more compact \leftrightarrow hotter

- stellar interiors much hotter than T_{eff}
- expect stellar evolution to include phases of "burning" non-gravitational "fuel" between phases of gravitational contraction
- (non-relativistic) ideal gas stars are self-regulating: stable
- (non-relativistic) ideal gas stars require time to evolve
- Ν
- relativistic stars are barely bound, can evolve rapidly these stars are unstable!

Stars: Energy Generation

How Does the Sun Shine?

The Sun radiates: shines from thermal radiation

- recall: surface flux $F_{surf,\odot} = \sigma T_{surf,\odot}^4 = 60 \text{ MWatt/m}^2$
- total power output = rate of energy emission = luminosity $L_{\odot} = 4\pi R_{1}^{2} _{AU}F_{\odot}(1 \text{ AU}) = 3.85 \times 10^{26} \text{ Watts} \qquad (1)$ $\rightarrow \text{ the Sun is a } 4 \times 10^{26} \text{-Watt lightbulb}$
- But also: the Sun has *constant* temperature, luminosity (over human timescales \gtrsim centuries)
- Q: how is the Sun unlike a cup of coffee?

The Sun is Not a Cup of Coffee

Coffee Thermodynamics

Demo: cup of coffee: cools thermodynamic lesson:

- left alone, hot coffee cools (surprise!)
 → energy radiated, not replaced
- to keep your double-shot soy latte from cooling need Mr. CoffeeTM machine–energy (heat) source

Contrast with the Sun

СЛ

- surface T_{\odot} constant over human lifetimes but energy *is* radiated, at enormous rate
- ergo: something must replace the lost energy
- ▷ What is solar heat source (fuel supply)?
 - \rightarrow a mystery in Astronomy until the 20th century

Q: all possible energy/heat sources which Sun taps? Q: how to test/compare which are important?

Energy Conservation and the Sun

recall: power is energy flow rate L = dE/dt

assume:

- Sun always emits energy at today's rate (L constant)
- radiation lasts for time τ_{\odot} = "lifetime" of Sun Q: what is a minimum value for τ_{\odot} ?

energy output over Sun's lifetime:

 $E_{\text{out}} = L\tau$

Energy conservation:

solar energy supply = lifelong energy output

σ

Solar Batteries: Required Lifetime

from radioactive dating of meteorites: the solar system is very old: age $t_{SS} = 4.55 \times 10^9$ yr Sun's present age essentially the same: $t_{\odot,now} = t_{SS} = 4.55$ billion years

total energy output over this time is huuuge! \rightarrow required huge energy reservoir

Q: possible sources–not just right answer, but any energy reservoirs?

iClicker Poll: Rank the Energy Sources

Vote your conscience!

Of the proposed solar energy reservoirs

Which one is the largest, i.e., can power the Sun longest?

Which one is the smallest?

00

Q: how to sort the candidates? how to tell which is right?

Energy Sources in the Sun

to evaluate energy sources, need to study energy "budget"

- output: energy supply required to power Solar luminosity
- input: available energy sources that might act as fuel

PS4: sort sources by *time* they can power the Sun Here: look at energy budget directly

Solar Energy: Required Supply

Sun must shine for at least the age of Solar System, emitting

$$E_{\text{emit}} = L_{\odot} t_{\text{ss}} \approx 6 \times 10^{50} \text{ erg} = 6 \times 10^{43} \text{ Joule}$$
 (2)

 $_{\circ}$ this a lot! but also huge mass \rightarrow huge fuel supply

solar emitted energy to date

$$E_{\text{emit}} = L_{\odot} t_{\text{ss}} \approx 6 \times 10^{50} \text{ erg} = 6 \times 10^{43} \text{ Joule}$$

per unit mass

$$u_{\text{emit}} = \frac{E_{\text{emit}}}{M_{\odot}} = 3 \times 10^{17} \text{ erg/g} = 3 \times 10^{14} \text{ J/kg}$$

and *Sun is mostly hydrogen*, with $N_p \approx M_{\odot}/m_p \approx 10^{57}$ protons so emitted energy per proton, is

 $\epsilon_{\text{emit}} = \frac{E_{\text{emit}}}{N_{\text{p}}} = 5 \times 10^{-7} \text{ erg/proton} = 3 \times 10^{5} \text{ eV/proton}s$

Q: typical chemical energy per proton? Hint: bonds?

Q: average Sun's thermal energy per proton?

5 Q: and so?

solar energy emitted to date, per proton:

 $\epsilon_{\text{emit}} = \frac{E_{\text{emit}}}{N_{\text{p}}} = 5 \times 10^{-7} \text{ erg/proton} = 3 \times 10^{5} \text{ eV/proton}$ if fuel is chemical: power from exothermic chemical reactions energy comes from atomic bonds typical scale: binding energy of hydrogen, $\epsilon_{\text{H}} = B_{\text{H}} = 13.6 \text{ eV/proton}$ to compare, TNT has $\epsilon_{\text{TNT}} = u_{\text{TNT}}m_p = 0.05 \text{ eV/proton}$

if fuel is thermal: power from cooling ideal gas: per proton, energy is $\epsilon_{\text{therm}} \sim \langle kT \rangle$ and from Virial theorem we found: $\langle kT_{\odot} \rangle \approx 10^3 \text{ eV}$ *Q: what does this say about gravitational potential energy supply?*

these are woefully inadequate! PS4: so is gravitation, rotation
Lesson: a huge non-gravitational energy source needed

historically, a mystery! no feasible energy source known so 19th century astronomers argued (incorrectly) that age of Earth must be much shorter than geologists and biologists thought. D'oh!

Spoiler Alert!

there is **only one** viable candidate:

• Nuclear Energy

12

The Sun is a vast nuclear reactor in hot core, hydrogen converted to helium by nuclear reactions

Note: needed *quantitative* estimates of burn times
to answer *qualitative* question "What powers the Sun?"
→ the power of (and necessity of) number crunching!

Overview: the Structure of Matter

same element (same # p) can have different # neutrons \rightarrow "isotopes"

examples: most hydrogen is ${}^{1}H = 1p, 0n$ but $\sim 10^{-4}$ of hydrogen is deuterium ${}^{2}H = 1p, 1n$ most U is ${}^{238}U = 92p, 146n$; about $\sim 1\%$ is ${}^{235}U = 92p, 143n$

atom net charge fixed by # electrons

 $\# e = \# p \rightarrow \text{neutral}$

$e = # p - 1 \rightarrow singly ionized$

Note: all p, n, e are absolutely *identical* and *indistinguishable* this turns out to be crucial for the understanding of matter in a quantum mechanical way

14

iClicker Poll: Forces in Nuclei

Consider a nucleus, say ${}^{4}\text{He} = 2p+2n$ maintains same size: not imploding, exploding

How many forces act on each proton?

15

Forces in Nuclei

nuclei made of *protons and neutrons:* "nucleons" sizes similar:

 $r \approx 1.4 \times 10^{-15}$ m = 1.4 femtometer = 1.4 fermi

in nucleus: nucleons are touching!

- nuclear size \ll atom size
- protons very close \rightarrow *huge electrostatic repulsion!*

electrostatic (Coulomb) energy between two protons in nucleus

$$E_{\rm C} = \frac{e^2}{[4\pi\epsilon_0]r} \approx 1 \,\,{\rm MeV} \tag{3}$$

if this is unopposed, nuclei would fly apart!

nuclear stability requires attractive force between nucleons

Nuclear Forces

thus: existence of nuclei demands a stabilizing force the nuclear interaction / nuclear force

- attractive at short distances
- stronger than Coulomb force at short distances
- \bullet with \sim MeV scale strength
- weakens at long distances or all nuclei would merge to one!

Nuclear Binding

stable atomic nuclei are bound states of nucleons

- that is: they can't "fall apart" on their own
- the same way bound atoms, planetary systems, binary stars don't fall apart

so nucleus A, with Z protons and N neutrons has **binding energy** B_A = energy required to rip apart this means that

$$E_A + B_A = ZE_p + NE_n \tag{4}$$

that is

binding
$$=$$
 parts $-$ whole (5)

$$B_A = ZE_{\rm p} + NE_{\rm n} - E_A \tag{6}$$

 $= >0 \tag{7}$

18

so energy of parts is more than whole!

but Einstein says $E = mc^2$

Q: what does this mean generally? implications for nuclei?

Nuclear Binding

Einstein $E = mc^2$ says: an object at rest, with mass m contains energy $E = mc^2$ simply by having mass

- mass is a form of energy!
- not due to motion: "rest mass energy"

for nuclei (and similar any other bound system), binding energy

$$B_A = ZE_p + NE_n - E_A > 0 \tag{8}$$

implies a *mass difference*

$$B_A = Zm_pc^2 + Nm_nc^2 - m_Ac^2 = (Zm_p + Nm_n - m_A)c^2 > 0$$
(9)

- mass of parts > mass of whole
- mass difference measures binding energy

	binding	binding energy
bound system	energy <i>B</i>	per nucleon $B/(Z + N)$
hydrogen atom pe	13.6 eV	13.6 eV/nucleon
⁴ He nucleus $2p, 2n$	28.3 MeV	7.07 MeV/nucleon
⁵⁶ Fe nucleus $26p, 30n$	492 MeV	8.79 MeV/nucleon
238 U nucleus $92p, 146n$	1801 MeV	7.57 MeV/nucleon

- Q: atoms vs nuclei comparison?
- *Q: comparison among nuclei?*
- Q: lessons for Sun?

Lessons: Nuclear Energy as Stellar Fuel

nuclei vastly more tightly bound than atoms

- much harder to rip apart
- but much more energy at play when this happens

nuclear reactions: transformation of one set of nuclei to another

- leads to changes in sum of binding energies
- can require net energy input (endothermic)
- or can release net energy (exothermic)

typical reaction energy per nuclear particle (nucleon = n, p): $B/(Z + N) \sim few$ Mev/nucleon this is more than enough to power the Sun!

21

raises the question: how does the Sun-and all stars-do this?