Astro 404 Lecture 14 Sept. 27, 2019

Announcements:

- Problem Set 4 due 5pm today last minute office hours after class
- Problem Set 5 next Friday

Last time: the Sun is a nuclear furnace *Q: how do we know this? Q: how is the Sun unlike a cup of coffee?* atoms and nuclei

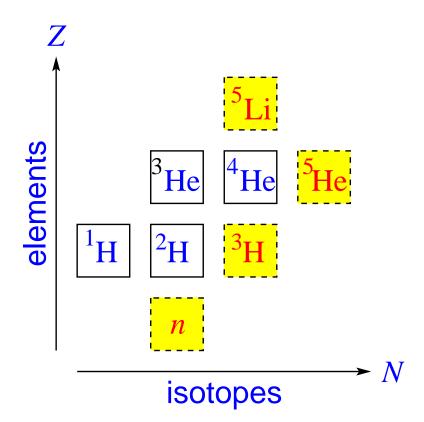
 $_{\mu}$ Q: what defines an element? an isotope?

How the Sun Shines: The Story Thus Far

the Sun is a $L_{\odot} = 3.85 \times 10^{26}$ Watt lightbulb burning for at least Solar System present age $t_{ss} = 4.55$ Gyr needed energy per proton:

$$\epsilon_{\text{emit}} = \frac{E_{\text{emit}}}{N_{\text{p}}} > 3 \times 10^5 \text{ eV/proton} = 0.3 \text{ MeV/proton}$$

atoms: sorted by number Z of protons nuclei: ingredients: protons and neutrons – **nucleons** isotopes defined by Z and number N of neutrons


nuclear mass number total number of nucleons

A = N + Z

Ν

The Lightest Stable Isotopes

- stable hydrogen isotopes
 - proton $p = {}^{1}H$, deuterium $D = {}^{2}H$
- stable helium isotopes helium-3 ³He helium-4 ⁴He
- these are the only stable nuclei with A = N + Z = 1, 2, 3, 4 nucleons
- there are *no stable nuclei* with A = 5 or 8 nucleons
- $^\omega$ www: chart of nuclides

Forces in Nuclei

nuclei made of *protons and neutrons:* "nucleons" sizes similar

 $r_n \approx r_p \approx 1.4 \times 10^{-15}$ m = 1.4 femtometer = 1.4 fermi

in nucleus: nucleons are touching!

4

- nuclear size \ll atom size (\approx 1 Å = 0.1 nm)
- protons very close → huge electrostatic repulsion!

electrostatic (Coulomb) energy between two protons in nucleus

$$E_{\rm C} = \frac{e^2}{[4\pi\epsilon_0]r} \approx 1 \,\,{\rm MeV} \tag{1}$$

if this is unopposed, nuclei would fly apart!

nuclear stability requires attractive force between nucleons

Q: how should nuclear forces behave at large distances?

Nuclear Forces

thus: existence of nuclei demands a stabilizing force the nuclear interaction / nuclear force

properties of nuclear force:

- attractive at short distances
- stronger than Coulomb force at short distances
- \bullet with \sim MeV scale strength
- weakens at long distances or all nuclei would merge to one! or react at room temperatures

good news:

СЛ

nuclear forces lead to energies $\gtrsim 1$ MeV very promising solar energy source!

Lessons: Nuclear Energy as Stellar Fuel

forces in nuclei vastly stronger than in atoms

- much harder to rip apart
- but much more energy at play when this happens

nuclear reactions: transformation of one set of nuclei to another

- can require net energy input (endothermic)
- or can release net energy (exothermic)

raises the question: how does the Sun-and all stars-do this?

Nuclear Fusion in the Sun

The Sun is a nuclear reactor i.e., nuclear reactions occur inside the Sun change reactant nuclei into different product nuclei \rightarrow elements transformed into other elements \rightarrow cosmic alchemy!

Mechanism: high-energy/high-speed collisions between nuclei

 $nucleus_1 + nucleus_2 \rightarrow nucleus_3 + energy$ (2)

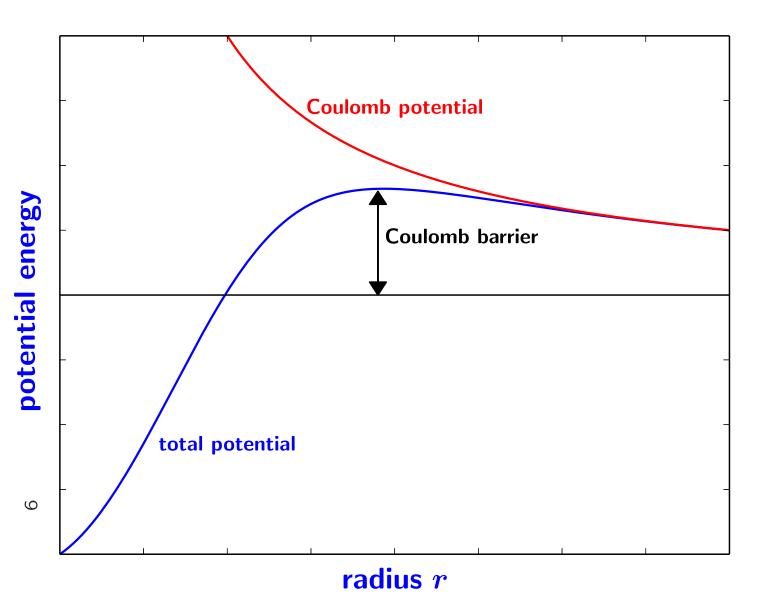
- nuke energy release \rightarrow stellar power source
- lighter nuclei combine \rightarrow heavier: fusion
- *Q*: why are high energies, speeds needed?
- *Q: how do the nuclei get these energies & speeds?*

Thermonuclear Reactions

recall forces at play in nuclei:

• Coulomb repulsion between nuclei with Z_1 and Z_2 protons:

$$E_{\mathsf{C}} = \frac{Z_1 Z_2 e^2}{[4\pi\epsilon_0]r} \tag{3}$$


long range, only goes to zero as $r \to \infty$

• nuclear force attraction is short range

nuclei must be nearly touching until nuclear force "wins" and reaction occurs

- thus nuclei must overcome "Coulomb barrier" to react
- this requires high energy particles
- • and for thermal gas $\langle mv^2 \rangle \sim kT$: need high temperature!

Coulomb Barrier in Nuclei

iClicker Poll: Reaction Types

consider a gas of particles in random thermal motion

Which types of collisions will be more frequent?

A collisions between two particles "two-body collisions" $a + b \rightarrow \cdots$

Β

collisions of three particles "three-body collisions" $a + b + c \rightarrow \cdots$

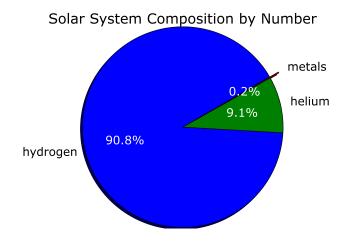
two and three body collisions should be equally frequent

Reaction Chains

In fact: many reactions can and do occur but a small handful are the most important

Key reactions occur in "chains"

- first step involves pre-existing solar ingredients
- input for each new step is output from previous step
- important reactions involve collisions between two nuclei three-body reactions rare, require high density not important for main sequence stars, but can be later


Solar Composition

the Sun's ingredients are fuel for nuclear reactions

determined by observation of Sun's atmosphere and by collecting solar wind (Apollo!)

solar ingredients by number of atoms

- hydrogen (protons): $\approx 91\%$
- helium (⁴He): $\approx 9\%$
- \bullet other (''metals''): $\approx 0.1\%$

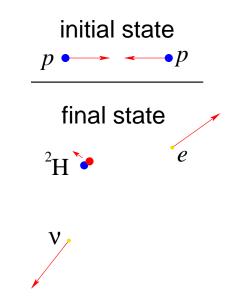
 $\overline{\aleph}$ Q: so what are possible first steps in nuclear reactions? Q: which are allowed?

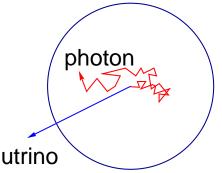
Nuclear Burning in the Sun

Sun is mostly made of protons (hydrogen) with small amounts of helium

possible first steps: pairs of ingredients

- $p + p \rightarrow p + p$ allowed but no progress! and no energy release ("elastic")
- p + p → ²H only possible A = 2 product but reaction in this form is incomplete/illegal! Q: why? how to fix?
- $p + {}^{4}\text{He} \rightarrow {}^{5}\text{Li}$ gives A = 5: unstable! instantly decays back ${}^{5}\text{Li} \rightarrow p + {}^{4}\text{He}$: no progress!
- ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be}$ gives A = 8: unstable!
- quickly decays back ${}^{8}\text{Be} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$: no progress


first step: "p-p reaction"


- $p + p \rightarrow {}^{2}\mathsf{H} + e^{+} + \nu_{e}$
- ${}^{2}H=\boxed{np}$ deuterium
- *e*⁺ "positron"

required by charge conservation antimatter: anti-electron! then $e^- + e^+ \rightarrow \gamma + \gamma$ energy! annihilation

• ν_e "electron-type neutrino"

required by angular momentum conservation very low-mass $(m_{\nu} \ll m_e)$ particle only created in nuclear reactions ("weak" decays) very weakly interacting particle once born, go thru Sun, Earth, your body neutrino but almost never interact

1 D 4

Q: next steps?

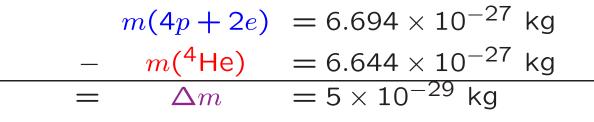
The pp Chain

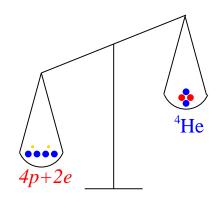
Dominant nuclear reactions in the Sun: "pp" Chain $p + p \rightarrow \frac{2H}{e^+} + \frac{e^+}{\nu} + \frac{e^-}{e^+} + \frac{e^+}{\gamma} + \gamma$ $^{2}H + p \rightarrow ^{3}He + \gamma$ $^{3}He + ^{3}He \rightarrow ^{4}He + 2p$

Net effect: $4p + 2e^- \rightarrow \boxed{2n2p} = {}^4\text{He} + \text{energy} + \dots$

Fusion Energy

Where does the energy come from? mass! Einstein: mass m at rest contains energy $\varepsilon = mc^2$


```
Observed fact:


m({}^{4}He_{atom}) < m(4p + 2e)!

whole < parts!
```

Do the math:

16

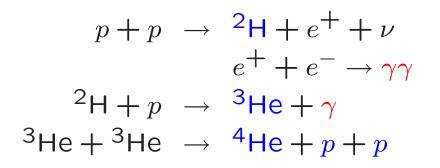
fusion \rightarrow mass reduction!

 \rightarrow rest mass decrease \rightarrow energy release!

Where Does the Energy Go?

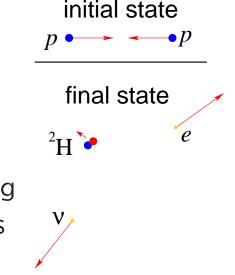
energy "reservoir" is from changes in mass but where does it go?

recall pp chain:


$$p + p \rightarrow {}^{2}\mathsf{H} + e^{+} + \nu$$
 (4)

$$e^+ + e^- \to \gamma\gamma \tag{5}$$

$$^{2}\text{H} + p \rightarrow ^{3}\text{He} + \gamma$$
 (6)


³He + ³He
$$\rightarrow$$
 ⁴He + $p + p$ (7)

in each reaction mass energy is released: $m_{final} < m_{initial}$ for each reaction: *Q*: where does that energy go? \overrightarrow{Q} : how does this ultimately lead to Sunlight?

★ for final state **nuclei**: energy goes to *motion*: $v_{nucleus} \gg v_T$ \Rightarrow large *kinetic energy*

then gradually slow, mostly via Coulomb scattering \rightarrow *heats* the plasma, also generates many photons

- \star for final state **photons**: $\overleftarrow{\omega}$ carry momentum and very high energy: *gamma rays*!
 - then scatter violently, also *heat* the plasma

in each reaction mass \rightarrow energy (kinetic, photons) total for each $4p \rightarrow {}^{4}$ He fusion: $Q = \Delta \varepsilon = \Delta mc^{2} = 4.5 \times 10^{-12}$ Joules

Estimate Solar fusion energy supply:

$$E_{\text{fuse}} = \frac{\# \text{ nuclei in Sun}}{4 \text{ nuclei/fusion}} \times Q \sim 1.3 \times 10^{45} \text{ Joules}$$
(8)
if *all* Sun's hydrogen is fuel, can burn for
$$\tau_{\text{fuse}} = E_{\text{fuse}}/L = 3 \times 10^{18} \text{ sec} = 100 \text{ billion years!}$$

iClicker Poll: Solar Nuclear Lifetime

if all Sun's hydrogen is fuel, nuclear fusion can burn for $\tau_{\rm fuse} = E_{\rm fuse}/L = 3 \times 10^{18}$ sec = 100 billion years!

Vote your conscience!

This is a crude estimate of the solar fusion lifespan-but how?

A this is an *over*estimate of the lifespan

B this is an *under*estimate of the lifespan

Solar Life Expectancy

We have overestimated fuel available for fusion: assumed Sun can burn all if its hydrogen

```
\rightarrow only fuse at high T, \rho \rightarrow core of Sun
```

21

```
true lifetime: \tau \sim 1 \times 10^{10} yr = 10 billion yrs

\rightarrow Sun is middle aged

will last another \sim 5 billion yrs
```

Q: how test that sun is nuke powered?

How Do We Know?

By the 1930's we knew that the Sun is nuclear powered www: Nobel Prize: Hans Bethe

The Sun is a mass of incandescent gas a gigantic nuclear furnace Where hydrogen is burned into helium, at temperatures of millions of degrees – Lou Singer and Hy Zaret, 1959; cover: They Might Be Giants 1993

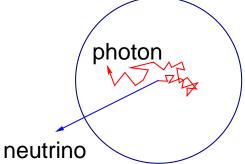
Q: how could we be so sure?

Can we get even more direct confirmation?

 $\stackrel{\text{N}}{\sim}$ Q: is another way to confirms the Sun is a nuclear reactor? A "smoking gun" signature?

The Evidence: Solar Neutrinos

If the Sun takes $4p \rightarrow {}^{4}He = |2p2n|$ then it *must* convert $2p \rightarrow 2n$ \rightarrow *must* produce neutrinos! in fact: most made via $pp \rightarrow de^+ \nu$


The Sun radiates neutrinos as well as photons!

...we are bathed in solar "neutrinoshine"

Moreover:

NB

- since ν are weakly interacting they come directly from the solar core photon \rightarrow messengers from the center of the Sun! • but luckily, weakly interacting \neq non-interacting
- \Rightarrow solar neutrinos are potentially observable!
- clever experiments can try to "catch" them

In Search of Solar Neutrinos

experiments have been built to "see" solar neutrinos by observing rare cases of ν interactions with atoms all use huge underground detectors *Q*: why huge? why underground?

Two types: 1. "radiochemical" – vats of fluid see element change due to ν ex: chlorine fluid $\nu + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^$ collect Ar atoms (radioactive!) www: Davis chlorine experiment

2. "scattering" — vats of ultra-pure water see light pulses from high-energy e^- scattered by ν s www: SNO, Borexino www: Super-K Sun image

24

Solar Neutrino Experiments: Results

- \star All experiments detect solar ν s!
- \star Scattering experiments show neutrinos come from the Sun!
- ★ Amount (flux) is just as predicted!
- *Q*: what fundamental fact(s) is/are confirmed?

Solar Neutrino Results

I. proof that Sun powered by nuke fusion II. ν s give direct view into solar core

III. these underground vats are ν telescopes!

A new window on the Universe: **Nobel Prize 2002!**

Using the Sun to probe neutrino transformation and mass: **Nobel Prize 2015!**

Solar Neutrino Experiments: A Deeper View

1960s: original chlorine radiochemical experiment (Ray Davis):

- \bullet sensitive only to a small component of very high-energy νs
- signal detected, but flux Φ^{obs}_ν ≈ Φ^{predicted}/3 birth of "solar neutrino problem" – where did they go?
 1990's: solar neutrino deficit confirmed

possible explanations:

27

- theory of solar nuclear reactions is wrong/incomplete
- neutrino theory incomplete

it was already known that: *neutrinos have 3 varieties ("flavors")* ν_e , ν_{μ} , ν_{τ} : named for partner they appear with solar neutrinos produced as ν_e : should remain so \rightarrow unless neutrinos can transform into different flavors!

Q: how to test for the latter possibility?

The Sun Reveals New Neutrino Physics

if neutrino flavor transformations exist

- \bullet some particles born in Sun as ν_e
- can arrive at Earth as ν_{μ} or ν_{τ} but radiochemical experiments only "see" ν_{e}

To test: build detectors sensitive to *all flavors* this was done: Sudbury Neutrino Observatory (SNO)

early 2000s: SNO results weigh in

• ν_{μ} and ν_{τ} detected from Sun!

28

- total flux for all ν agrees with Solar model!
- confirms new neutrino physics
- also transformations require neutrinos have mass!
 non-obvious property of the quantum flavor transformations

Nuclear Stability

stable atomic nuclei are bound states of nucleons

- that is: they can't "fall apart" on their own
- the same way bound atoms, planetary systems, binary stars don't fall apart

in other words:

to unbind a nucleus – to dismantle it to protons and neutrons requires an *input of energy*

Q: meaning for energies of the nucleus and its components?

Nuclear Binding Energy

so nucleus A, with Z protons and N neutrons has **binding energy** B_A = energy required to rip apart this means that

$$E_A + B_A = ZE_p + NE_n \tag{9}$$

that is

binding =
$$parts - whole$$
 (10)

$$B_A = ZE_p + NE_n - E_A$$
(11)
= > 0 (12)

so energy of parts is more than whole!

 $\stackrel{\mbox{\tiny \square}}{\longrightarrow}$ but Einstein says $E = mc^2$

Q: what does this mean generally? implications for nuclei?

Nuclear Binding

Einstein $E = mc^2$ says: an object at rest, with mass m contains energy $E = mc^2$ simply by having mass

- mass is a form of energy!
- not due to motion: "rest mass energy"

for nuclei (and similar any other bound system), binding energy

$$B_A = ZE_p + NE_n - E_A > 0 \tag{13}$$

implies a *mass difference*

$$B_A = Zm_pc^2 + Nm_nc^2 - m_Ac^2 = (Zm_p + Nm_n - m_A)c^2 > 0$$
(14)

- mass of parts > mass of whole
- $\stackrel{\scriptscriptstyle{\mathrm{\scriptsize W}}}{\scriptscriptstyle{\scriptscriptstyle{\mathrm{\scriptsize N}}}}$ mass difference measures binding energy

	binding	binding energy
bound system	energy <i>B</i>	per nucleon $B/(Z + N)$
hydrogen atom pe	13.6 eV	13.6 eV/nucleon
⁴ He nucleus $2p, 2n$	28.3 MeV	7.07 MeV/nucleon
⁵⁶ Fe nucleus $26p, 30n$	492 MeV	8.79 MeV/nucleon
238 U nucleus $92p, 146n$	1801 MeV	7.57 MeV/nucleon

- Q: atoms vs nuclei comparison?
- Q: comparison among nuclei?
- Q: lessons for Sun?