Astro 404 Lecture 18 Oct. 6, 2019

Announcements:

- Problem Set 6 due next Friday
- Office Hours: after class Wed, or by appointment

Last time

hydrogen fusion alternative: CNO cycle

Q: net effect of one cycle? role of C, N, O nuclei?

reaction rates

*Q*: what is reaction cross section?

, Q: mean free path? mean free time?

CNO cycle: with any X = C, N, Oone cycle has  $4p + X \rightarrow X + {}^{4}\text{He} + 2e^{+} + 2\nu_{e}$ net effect:  $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}$  $\star$  same net effect as pp chain: another way to burn hydrogen!

\* total CNO unchanged: acts as a catalyst!

for main sequence stars:

- pp dominates of mass  $M \lesssim 1.3 M_{\odot}$
- CNO dominates for higher masses

```
interacting "see" each other
as spheres of projected area \sigma(v): the
cross section
```

 $_{\rm \tiny N}$   $\,\star\,$  fundamental measure interaction strength/probability

### **Reactions: Characteristic Length and Time Scales**

for general reaction  $a + b \rightarrow c + d$ with projectile speed v

estimate average time between collisions on target b: mean free time  $\tau$ 

collision rate per target *b*:  $\Gamma = d\mathcal{N}_{coll}/dt$ so wait time until next collision set by  $\delta N_{coll} = \Gamma_{per b}\tau = 1$ :

$$\tau = \frac{1}{\Gamma_{\text{per}b}} = \frac{1}{n_a \sigma v} \tag{1}$$

in this time, projectile a moves distance: mean free path

$$\ell_{\rm mpf} = v\tau = \frac{1}{n_a\sigma} \tag{2}$$

ω

Q: what is collision or reaction rate per volume?

#### **Reaction Rate Per Volume**

recall: collision rate *per target b* is  $\Gamma_{per b} = n_a \sigma_{ab} v$ total collision rate *per unit volume* is rate per volume = rate per target × targets per volume

$$r_{ab} = \frac{dn_{\text{coll}}}{dt} = \Gamma_{\text{per}\,b}n_b = \frac{1}{1+\delta_{ab}}n_a n_b \sigma v \tag{3}$$

Kronecker  $\delta_{ab}$ : 0 unless particles a & b identical Note: symmetric w.r.t. the two particles

also note:  $n_a n_b \propto$  number of ab pairs reflects the fact that  $ab \rightarrow cd$  reactions are initiated by ab pairs!

4

Q: What if particles have more than one relative velocity?

### **Reaction and Energy Generation Rates**

If  $v \in$  distribution, rates is average over velocities:

$$\langle r_{ab} \rangle = n_a n_b \langle \sigma v \rangle \tag{4}$$

#### energy generation rate per volume $\mathcal{L}_{ab}$

depends on reaction rate  $r_{ab}$ and energy release per reaction  $Q_{ab}$ :

$$\mathcal{L}_{ab} = \frac{dE_{ab}}{dV \ dt} = Q_{ab} \frac{dN}{dV \ dt} = Q_{ab} \ r_{ab} = Q_{ab} \ n_a n_b \langle \sigma v \rangle \tag{5}$$

energy generation per unit mass:

$$q_{ab} = \frac{\mathcal{L}_{ab}}{\rho} = \frac{\rho_a \rho_b}{\rho} \frac{Q_{ab}}{m_a m_b} \rho \langle \sigma v \rangle = X_a X_b \frac{Q_{ab}}{m_a m_b} \rho \langle \sigma v \rangle \tag{6}$$

С

where  $m_a$  is mass of particle a

and  $X_a = \rho_a / \rho$  is fraction of mass density in a

### **Hydrogen Burning Rates**

nuclear energy generation rate per volume:

$$q_{ab} = \frac{\dot{\epsilon}_{ab}}{\rho} = X_a X_b \frac{Q_{ab}}{m_a m_b} \rho \langle \sigma v \rangle \tag{7}$$

- proportional to density:  $q\propto\rho$
- depends on *temperature* via particle speeds:  $\langle \sigma(v) v \rangle$

for hydrogen burning, roughly have:

$$q_{pp} \propto X_p^2 \rho T^4$$

$$q_{CNO} \propto X_p X_{CNO} \rho T^{16}$$
(8)
(9)

note strong CNO temperature dependence:

important for stars with high  $T_{C}$ 

σ

 $\Rightarrow$  huge luminosity for massive main sequence stars

# Main Sequence: Core Composition Over Time

in the core of a main sequence star

hydrogen fusion ( "nuclear burning") reactions:  $4p \rightarrow {}^{4}He + 2e^{+} + 2\nu_{e}$ 

- positrons annihilate  $e^+ + e^- \rightarrow \gamma + \gamma$
- neutrinos  $\nu_e$  escape

so in core: net change in matter is  $4p + 2e \rightarrow {}^{4}He$ 

so hydrogen burning in core:

- *reduces* the number of gas particles (electrons and nuclei)
- increases average mass  $m_{g}$  of a gas particle

# iClicker Poll: Core Pressure

compare the Sun's core at start of H burning vs present day and *imagine core temperature and volume held fixed* 

What effect does H burning have on core pressure?



core pressure *reduced* 



core pressure *increased* 



core pressure *constant* 

 $\infty$ 

### Main Sequence Evolution

hydrogen burning  $4p + 2e \rightarrow {}^{4}\text{He}$ reduces number of gas particles in Sun's core and increases average gas particle mass  $m_q$ 

core pressure: ideal gas law

$$P = \frac{N \ kT}{V} = n \ kT \tag{10}$$

if core T and volume V fixed: core pressure P decreases!

but pressure supports the core against gravity reduced pressure  $\rightarrow$  can't maintain hydrostatic equilibrium!

Q: how would the star respond?

Q

#### Main Sequence Evolution

Virial theorem, ideal gas

$$U = \frac{3}{2} \frac{M}{m_{g}} \langle kT \rangle = -\frac{1}{2} \Omega \sim \frac{GM^{2}}{R}$$
(11)  
$$\langle kT \rangle \sim \frac{GMm_{g}}{R}$$
(12)

main sequence:  $H \rightarrow {}^{4}He$  burning gives  $m_{g}$  increase

- $\rightarrow$  *contraction*: core density increase
- $\rightarrow \langle kT \rangle$  increase

recall pp chain energy release per mass:  $q_{pp} \propto \rho T^4$ core increase in  $\rho$ ,  $T \rightarrow higher energy production!$ 

10

star luminosity increases - "main sequence brightening"

# Main Sequence Evolution: H–R Diagram

main sequence core H burning: luminosity increase with time

in detailed models of the Sun

• initial zero age main sequence luminosity

 $L_{\odot,\text{init}} = 0.7 L_{\odot,\text{today}}$ 

(13)

• turns out: star radius R increases too small change in  $T_{\rm eff}$  – in Sun, slight increase

Q: consequences for HR diagram? how to test?

# Main Sequence Evolution on the H–R Diagram

Sun in H–R diagram over time: Sun point moves upward on main sequence other stars evolve similarly but sometimes change in  $T_{\rm eff}$ for a group of stars with mixed ages "smears out" the main sequence width

to test: find  $1M_{\odot}$  "solar twins" in young star clusters these indeed show lower *L*!

*Q: implications of* 30% *less luminous young Sun for Earthlings?* 

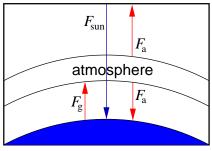
# The Faint Young Sun

consequences of Sun's main sequence brightening

in the past the Sun was less luminous  $L_{\odot,\text{init}} = 0.7L_{\odot,\text{today}}$  so lower flux  $F_{\odot}(1 \text{ au})$ : "faint young Sun"

but this sets Earth's temperature, so: cooler early Earth! if Earth absorbs same sunlight as now (same albedo)

$$T_{\text{Earth,init}} = \left(\frac{L_{\odot,\text{init}}}{L_{\odot,\text{today}}}\right)^{1/4} T_{\text{Earth,today}} \approx 263 \text{ K} = -12^{\circ} \text{ C} \quad (14)$$


Cold enough to freeze seawater! Earth frozen for first 2 Gyr (2.5 Gyr ago)! Yikes.

but: evidence for liquid water, and even life, up to 3.8 Gyr ago Q: possible explanations?

### Fain Young Sun Problem: Possible Solutions

liquid water on Earth back to Archean era 2.5 - 3.8 Gyr ago how to reconcile with Solar evolution?

**Greenhouse Effect** – add blanket to Earth atmospheric greenhouse gases trap Earth's thermal IR radiation warm Earth's surface above airless temperature



today: greenhouse effect warms Earth by  $\sim 30^{\circ}$ in past: *if thicker greenhouse gases, Earth warmer* 

↓ e.g., Sagan & Mullen (1972) proposed ammonia in early Earth later shown unlikely, but basic idea remains

### **Solar Mass Loss** – move the Earth if early Sun had stronger mass loss than today then *initial solar mass larger*

but Earth's angular momentum  $J_{\text{Earth}} = M_{\text{Earth}}va$  conserved PS6: this and Kepler's laws say higher  $M_{\odot} \rightarrow$  smaller semimajor axis *a*: Earth closer! and sees higher solar flux  $F = L_{\odot}/4\pi a^2$ : hotter!

PS6: find needed mass loss today would also affect orbits of other planets good: lots of evidence early Mars had liquid water

G what about the future Sun? mitigation?

# The Future Sun

main sequence brightening will continue in the future unmeasurably small changes on human timescales but eventually will profoundly affect the Earth

**1** Gyr from now: Sun 10% more luminous heating  $\rightarrow$  evaporation of water vapor  $\rightarrow$  adds to greenhouse in upper atmosphere, UV from Sun breaks up H<sub>2</sub>O molecules and *H* lost to space:

- Earth hot and dry
- and losing water

16

3.5 Gyr from now: Sun 40% more luminousoceans evaporated, hydrogen lost to spacerunaway greenhouse effectUh oh. probably no life unless mitigation.

#### Mitigation?

- move Earth's orbit outward perhaps by exchanging energy with Jupiter
- a huge task, but we have lots of time