
Astro 404

Lecture 23

Oct. 21, 2019

Announcements:

• Problem Set 7 due Friday 5pm

• Exam: grading elves hard at work

Before Exam:

End of main sequence

• core density and temperature increases on main sequence

• but at end of main sequence equilibrium lost!

core contracts until new pressure source emerges

Conclusion:

need to understand matter at high density and pressure
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Thermal Photons: Blackbody Radiation

dimensional analysis: kT , h, c form one length

ℓ =
hc

kT
=

h

pT
(1)

the thermal de Broglie length

from this we estimate number density

nγ ∼ ℓ−3 ∼
(

kT

hc

)3

(2)

energy density

εγ ∼ kTℓ−3 ∼ (kT)4

(h3c3)
(3)

pressure has dimensions of energy density, so

Pγ ∼ ε (4)

of course we know thermal photons result: blackbody radiation!
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Blackbody Radiation: Exact Results

for blackbody photons at T , with g = 2 polarizations:

nγ = g
ζ(3)

π2

(

kT

h̄c

)3

∝ T3

εγ = g
π2

30

(kT)4

(h̄c)3
= aSB T4

Pγ =
1

3
εγ ∝ T4

where ζ(3) =
∑∞

n=1 1/n3 = 1 + 1
23 + 1

33 + · · · = 1.20206 . . .

and h̄ = h/2π is the chic “reduced Planck’s constant”

and aSB = π2/15 k4/h̄3c3 is the Stefan-Boltzmann radiation constant

Note: already saw that relativistic gas has P = ε/3

also note: energy flux is roughly F ∼ cε ∼ T4

which is Stefan-Boltzmann result!
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Radiation Pressure

long ago in Lecture 2 we saw that

because photons carry momentum, when they interact

they also exert force: radiation pressure

in PS1: pressure force due to flux of photons

all moving outward radially

blackbody radiation: randomly directed thermal photons

Prad =
1

3
εrad =

1

3
aSBT4 ∝ T4 (5)

exists in stars in addition to gas pressure!

Ptot = Pgas + Prad (6)

so for ideal gas and radiation

Ptot =
ρ kT

mg
+

1

3
aSBT4 (7)
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iClicker Poll: Radiation Pressure in Stars

Vote your conscience! All answers get credit

in which main seq stars does radiation dominate pressure?

A the lowest mass stars

B the highest mass stars

C intermediate masses, neither lowest nor highest

D radiation pressure never exceeds gas pressure
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Star Average Pressure and Mass

total pressure sums gas and radiation

Ptot = Pgas + Prad =
ρ kT

mg
+

1

3
aSBT4 (8)

and average mass density

〈ρ〉 =
3M

4πR3
∼ M

R3
(9)

For ideal gas: Virial theorem → average interior temperature

〈kT 〉 =
2

3

mgU

M
∼ GMmg

R
(10)

so ratio of pressures (PS7)

Prad

Pgas
∝ T3

ρ
∼ M3/R3

M/R3
= M2 (11)

so on main sequence:
• radiation pressure small for low mass stars (including Sun!)
• radiation pressure dominates in high mass stars!
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Quantum Matter and Density

now consider a gas of non-relativistic matter

allow quantum effects

non-relativistic: must have v ≪ c

so for thermal particles, typical kinetic energy mv2/2 ∼ kT ≪ mc2

for non-relativistic particles of mass m, at temperature T

typical kinetic energy

Ek =
p2

2m
∼ kT (12)

gives typical thermal momentum pT ∼
√

m kT

Q: what is thermal de Broglie wavelength here?

Q: estimate of number density n? mass density ρ?
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thermal momentum pT ∼
√

m kT

gives thermal de Broglie wavelength

λdeB(T) =
h

pT
∼
(

h2

m kT

)1/2

(13)

and so naively expect a number density

nnaive(T) ∼ λdeB(T)−3 ∼
(

mkT

h̄2

)3/2

(14)

and mass density

ρnaive(T) = m nnaive(T) ∼ m

(

mkT

h̄2

)3/2

(15)

for a given species m, this gives a number density n(T)

entirely and universally determined by temperature!

Q: what is strange about this result?

Hint: what sets ρ(T)? apply to objects in this room?
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naively expect mass density

ρnaive(T) = m nnaive(T) ∼ m

(

mkT

h̄2

)3/2

(16)

but that can’t be right!

density of water in you, a beverage, and the air

are all different!

also: for T = 300 K this gives

nnaive,water ∼ 1027 cm−3, and ρnaive,water ∼ 3×104 g/cm3. Yikes!

Q: where did we go wrong?
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really: we have assumed particle spacing always around λdeB(T)

this is “quantum size” of thermal particles

this sets a special density: the quantum concentration

nQ =

(

mkT

2πh̄2

)3/2

∼ 1

λ3
deB

(17)

nQ rises with T since λdeB(T) = h/pT ∝ T−1/2

but clearly

• real particle density can be lower or higher!

• nQ is high compared to everyday matter

Q: why do we expect physically if n ≪ nQ? if n >∼ nQ?1
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• if n ≪ nQ:

particle spacings larger than thermal de Broglie wavelength

particles are “too far apart” for quantum effects

expectation:

quantum effects small: ordinary (“classical”) ideal gas!

• if n >∼ nQ:

particle spacings of same order as de Broglie

now expect departures from classical ideal gas

must include quantum effects

namely: combine Pauli exclusion principle

with Heisenberg uncertainty principle

1
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Identical Particles

experiments and theory show: all particles of each species

are completely identical and indistinguishable

example: all electrons are completely identical

as are all photons, neutrons, protons, etc

always have exactly same charge, mass, spin

spoiler: not just result of a high-quality “electron factory”

but really: space filled with “electron field”

whose quantum excitations are electron particles

Pauli: this has profound effects in quantum mechanics

for systems of multiple particles

Q: experts–what’s the rule? what does it depend on?
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Pauli Principle

behavior of identical particles

depends on spin (particles “self” angular momentum)

Bosons: particles with spin S = 0,1,2, . . .

example: photon S = 1 is a boson

no restriction on number of boson in same quantum state

“bosons are social” – party anmials of the quantum world

Fermions: spin S = 1/2,3/2,5/2, . . . (“half-integer spin”)

ex: electrons, protons, neutrons all are S = 1/2 Fermions

at most one Fermion per quantum state

“fermions are loners” – they want to be alone!

Pauli exclusion principle

profound implications for the nature of matter!
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Uncertainty Principle

Heisenberg: wave-particle duality means

• cannot know position better than ∼ de Broglie wavelength

position uncertainty ∆x >∼ λdeB ∼ h/px

• cannot know momentum for particle confined to ∆x

better than x-momentum uncertainty ∆px
>∼ h/∆x

can show in general: uncertainty principle

∆x ∆px ≥ h (18)

so in volume ∆V = ∆x ∆y ∆z

∆V ∆3p ≥ h3 (19)

with “momentum space” volume ∆3p = ∆px ∆py ∆pz

Q: so what is maximum number density for gas of electrons?
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Maximum Fermion Density

Pauli exclusion principle means fermions obey

∆V ∆3p ≥ h3 (20)

so for gas of electrons with S = 1/2

• 2 possible spin states (↑, ↓)
same energy in both: degenerate states

• maximum number density ne set by

ne,max ∆V = 2 (21)

which gives

ne,max =
2

∆V
=
∑

p

2

h3
∆3p (22)

momentum space volume 4π/3 p3 has ∆3p = 4πp2 dp

up to some maximum momentum (“Fermi momentum”) p0

1
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Pauli-approved maximum electron density

sums (integrates) all possible momenta up to some p0

ne,max =
2

∆V
=

2

h3
4π

∫ p0

0
p2 dp (23)

=
8π

3h3
p3
0 (24)

maximum density also called degenerate number density

required maximum momentum to have number density ne:

p0 =

(

3ne

8π

)1/3
h ∼ h

ℓ
(25)

so Fermi momentum set by uncertainty principle p0 ℓ ∼ h

where distance ℓ = n
−1/3
e is typical particle spacing

Q: for degenerate gas, what is special about states above, below

p0?
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Fermi momentum for electron gas of number density ne:

p0 =

(

3ne

8π

)1/3
h ∼ h

ℓ
(26)

number density ne sets highest momentum

reached by filling all states up to p0

and leaving all others empty

p=p

p=pmin

0

now consider the case of pT =
√

mkT ≫ p0

Q: what does this mean physically?

Q: what does this mean for density?1
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if gas is completely degenerate

p3
0 =

3neh3

8π
(27)

so so if p0 ≪ pT =
√

mkT , then physically

thermally available momentum states far exceed needed p0

momentum states don’t have to be “packed full”

density is not maximal → gas is not degenerate

quantitatively, we have

3neh3

8π
≪ p3

T = (mkT)3/2 (28)

ne ≪ 8π

3

(

mkT

4π2 h̄2

)3/2

∼ nQ (29)

lesson: non-degenerate ⇔ density ≪ quantum concentration

so air in this room, gas in solar core today: non-degenerate
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