Astro ⁴⁰⁴ Lecture ²⁴Oct. 23, ²⁰¹⁹

Announcements:

- Problem Set ⁷ due Friday 5pm
- Office Hours: instructor today 11am-noon or by appointment
- TA: Thursday noon-1pm
- Exam: grading elves hard at work

Last time: final piece of stellar physics puzzlematter and radiation at high density and pressure

• matter: classical and quantum gasses dividing line: quantum concentration n_Q

 \Box Q: what's that? matter behavior at $n < n_Q$? $n > n_Q$?

quantum concentration: particle number density when particle spacing

is thermal de Broglie wavelength

$$
\lambda_{\text{deB},T} = \frac{h}{p_T} = \sqrt{\frac{h^2}{m kT}}
$$
 (1)

which gives ^a number density:

$$
n_Q = \left(\frac{2\pi mkT}{h^2}\right)^{3/2} \sim \lambda_{\text{deB},T}^{-3} \tag{2}
$$

expect: quantum behavior when $n>n_Q$ non-quantum (classical) behavior when $n < n_Q$

 \mathcal{D}

Degeneracy Revisited: Building Quantum Systems

central result of quantum mechanics: when quantum particles confined to finite volume of spacenot all energies are allowed!

allowed states have definite energies: "energy levels"which may or may not be different for different spin states

Pauli Principle: at most one Fermion per quantum stateincluding both energy and spinif energy levels the same for spin up and downthen two particles per energy level

example: atomsQ: what confines atom particles to small volume? ω

Filling Energy Levels: Electrons in Atoms

atoms made of *nucleus* of charge $Q = +Ze$ surrounded by Z electrons, each of charge $Q=-e$ with $Z = 1$ for hydrogen, $Z = 92$ for uranium

electrostatic (Coulomb) attraction binds electrons to nucleusand thus confines them

hence:

- electrons in atoms have discrete energy levels that is, energy levels not continuous, come in "steps"and thus only some electron "orbits" allowed
- electrons are Fermions: only one per quantum state
- energy roughly independent of spin: ² state per energy level

4

Q: how to "build" ^a normal (unexcited) atom?

Building an Atom

to "build" an atom:

- lowest energy level: **ground state** fits up to 2 electrons, spins $\uparrow\downarrow$ these have same energy: "degenerate"
- for normal (unexcited) atom: keep adding electronstwo per energy level from the lowest available energy up
- after ground state, fill first excited state
- repeat until all Z electrons added $\overline{1}$ $\overline{1}$ $\overline{E} = E$

compare and contrast to degenerate star with $\sim 10^{57}$ atoms

 σ Q: what confines the electrons? what sets levels? how to fill?

^A Degenerate Electron Gas

consider a degenerate star: a $N \approx 10^{57}$ particle gas
of free particles in volume confined by gravity! of free particles in volume confined by gravity!

"cold degenerate gas" $T = 0$

free quantum particles: states labelled byde Broglie wavelength $\lambda = h/p$ or equally well by $momentum$ p or energy $E(p)$

to build star out of degenerate electron gas:

• start in ground stateadding ² electrons ↑↓

 σ

- fill first excited state, etc
- until reach highest level: Fermi level labelled by Fermi momentum p_{0} or Fermi energy $E(p_{\mathsf{0}})$

Counting Degenerate States: Number Density

last time: Heisenberg says number of free electron states in volume V is: $\mathcal{N}_e = n_e V$

where electron number density sums up statesfrom ground state to Fermi level:

$$
n_e = n_e \text{degen} = \frac{2}{h^3} \int_0^{p_0} d^3 p = \frac{8\pi}{h^3} \int_0^{p_0} p^2 dp
$$
(3)
= $\frac{8\pi}{3h^3} p_0^3$ (4)

particle states filled with maximum efficiency up to $p_{\mathbf{0}}$ \Rightarrow highest density possible for this number of electrons

 \sim so Fermi level sets maximum number density but also works the other way

to create a degenerate gas of electrons with number density n_e requires Fermi momentum

$$
p_0 = \left(\frac{3n_e}{8\pi}\right)^{1/3} h \sim \frac{h}{\ell} \tag{5}
$$

where $\ell=1/n_e^1$ $\frac{1}{e}$ 3 $e^{t/9}$ is the typical electron spacing

number density n_e sets highest momentum reached by filling all states up to p_{0} and leaving all others empty

now consider T nonzero, with $p_T=\sqrt{mkT}\gg p_0$ Q: what does this mean physically? $Q:$ what does this mean for density?

if gas is completely degenerate

$$
p_0^3 = \frac{3n_e h^3}{8\pi}
$$

so if $p_{\mathbf{0}}\ll p_{T}=\sqrt{mkT}$, then thermal excitations of momentum states \sqrt{mkT} , then physically

far exceed needed p_{0} momentum states don't have to be "packed full"and uncertainty principle allows larger spacing

density is not maximal \rightarrow gas is not degenerate

 $p=p$ ^T

so *heating a degenerate gas* to $kT \gg E(p_0)$ $"$ lifts" the degeneracy \rightarrow recover classical ideal gas
this will be explosively srusial for the fate of Sun li this will be explosively crucial for the fate of Sun-like stars!

 \circ

At What Density is Onset of Degeneracy?

quantitatively, to lift degeneracy with $p_T\gg p_0$ we have

$$
p_0^3 = \frac{3n_e h^3}{8\pi} \ll p_T^3 = (mkT)^{3/2}
$$
 (6)

$$
n_e \ll \frac{8\pi}{3} \left(\frac{mkT}{4\pi^2\hbar^2}\right)^{3/2} \sim n_Q \tag{7}
$$

lesson: <mark>non-*degenerate* ⇔ density ≪ quantum concentration</mark>

so air in this room, gas in solar core today: non-degenerate

Q: what if $p_T=\sqrt{mkT}\ll p_0$?

thermal excitations far below Fermi energystill need to "tightly pack" energy levelsgas is degenerate

this agrees with our derivation of degenerate state fillingthat implicitly used $T=0$

density condition: degenerate if $n > n_Q$

iClicker Poll: Nuclei/Ions

Vote your conscience! All answers get credit

So far we have focussed on degenerate electron gasWhat about the nuclei they came with?What sets the reationship between nuclei and e ?

- A must balance energy: energy densities must be equal
- B
- must balance momentum: Fermi momenta must be equal

D

must balance pressure: pressures must be equal

D must balance charge: p and e numbers must be equal

Mass Density of ^a Degenerate Electron Gas

electron number density: $n_e=8\pi/3h^3$ $\lnot~p$ 30

electron mass density

 $\overline{13}$

$$
\rho_e = m_e n_e = \frac{8\pi m_e p_0^3}{3 h^3} \tag{8}
$$

but there are nuclei (positive ions), giving net charge zero! so total p and e densities must balance: $n_{p,{\rm tot}}=n_e$

if average ion charge is Z_i and mass $m_i=A_i m_p$: total proton number density $n_p=Z_in_i$ ion number density $n_i=n_e/Z_i$ ion mass density $\rho_i=m_in_i=A_i m_p n_e/Z_i$

total mass density $\rho=\rho_e+\rho_i\approx\rho_i$: dominated by ions

Pressure of ^a Degenerate Electron Gas

in studying ideal gas, found that pressureis an average momentum flow:

 $P =$ momentum per particle \times particle flux $=$ 1 3 $\langle p\, \left\langle v\, \right\rangle$ (9)where $v(p)$ is the velocity for momentum p if non-relativistic: $v = p/m$

for degenerate electron gas, pressure is

$$
P_e = \frac{1}{3} \int p \ v \ dn_e = \frac{8\pi}{3h^3} \int_0^{p_0} p \ v \ p^2 \ dp \qquad (10)
$$

$$
= \frac{8\pi}{15m_e h^3} \ p_0^5 \qquad (11)
$$

but Fermi momentum given by number density: $p_{\mathsf{0}} \sim n$ 1 $\frac{1}{e}$ 3 $e^{i\theta}h$

$$
P_e = \frac{8\pi h^2}{15m_e} \left(\frac{3n_e}{8\pi}\right)^{5/3} \tag{12}
$$

14

Non-Relativistic Degeneracy Pressure

for (cold) non-relativistic degenerate electrons

$$
P_{e,\text{nr}} = \frac{8\pi h^2}{15m_e} \left(\frac{3n_e}{8\pi}\right)^{5/3} \tag{13}
$$

- pressure only depends on density and not temperature
- pressure grows with density

 $P_{e,\mathsf{nr}}~\propto~n$ 5 $\frac{5}{e}$ 3 $e^{\, \prime} \quad \quad \propto \rho$ 5 $\frac{5}{ }$ 3

- degeneracy pressure is large even when temperature small! due to Pauli principle! ^a quantum effect! contrast classical ideal gas: $P=nkT\rightarrow 0$ as $T\rightarrow 0$
- contrast classical ideal gas: $P = nkT \rightarrow 0$ as
• sometimes useful to write $P_e = K_{nr} n_e^{5/3}$, wit 5 $\frac{5}{e}$ 3 $e^{i\theta}$, with

$$
K_{\rm nr} = \left(\frac{3}{8\pi}\right)^{2/3} \frac{h^2}{5m_e} \tag{14}
$$

15

Q: what changes if the electrons are relativistic?

iClicker Poll: Relativistic Pressure

Vote your conscience! All answers get credit

Non-relativistic degenerate gasses have $P_{\mathsf{nr}}\propto\rho$ What will we find for relativistic degenerate gasses?5 $5/$ 3

$$
\boxed{\mathsf{A}}\quad\text{also }P_\mathsf{rel}\propto
$$

 P_rel increases more strongly with ρ

 P_rel increases more less with ρ

ρ

5/3

Now Go Relativistic

if electrons are rel<u>ativistic: speed</u>s $v \approx c$, momenta $p \gg m_e c$
and energy $E = \sqrt{(m_e c^2)^2 + (cn)^2} \rightarrow cn$ and energy $E = \sqrt{(m_ec^2)^2 + (cp)^2} \rightarrow cp$

but free particle states still set by de Broglie wavelengthand still labelled by momentum $\lambda_{\sf deB} = h/p$

number density still $n_e = 8\pi/3 \,\, p_0^3/h^3$ pressure uses $v(p) \approx c$:

17

$$
P_{e,rel} = \frac{1}{3} \langle p \ v \ n \rangle = \frac{2\pi}{3} \frac{cp_0^4}{h^3}
$$
\n
$$
= \frac{2\pi}{3} hc \left(\frac{3n_e}{8\pi}\right)^{4/3}
$$
\n(16)

- relativistic pressure also only depends on density and not T
- pressure grows with density $P_{e,\text{rel}} \propto n_e^{4/3} \propto \rho^{4/3}$
-
- weaker power law than non-relativistic scaling
• $P_{\text{rel}} = K_{\text{rel}} \; n_e^{4/3}$ with $K_{\text{rel}} = (3/8\pi)^{1/3} h c / 4$ $= K_{rel} n_e^{4/3}$ with $K_{rel} = (3/8\pi)^{1/3}hc/4$

Polytropes

We see that cold degenerate gasses have pressure

- that depends only on density
- and varies as a power law: $P \propto \rho^{\gamma}$

generalize to *polytropic equation of state*

$$
P = K \rho^{\gamma} = K \rho^{1+1/n} \tag{17}
$$

- pressure depends only on density, with
- K a constant
- \bullet n called the polytrope index

 $\frac{1}{\infty}$ simplifies stellar structure!

Hydrostatic Equilibrium of ^a Polytrope

use polytropic equation of state

$$
P = P(\rho) = K \rho^{\gamma} = K \rho^{1+1/n}
$$
 (18)

hydrostatic equilibrium gives

$$
\frac{dP}{dr} = -\frac{Gm(r)\ \rho(r)}{r^2} \tag{19}
$$

Q: what determines $m(r)$?

Q: so what is special about ^a polytrope?

hydrostatic equilibrium

 $\overline{2}$

$$
\frac{dP}{dr} = -\frac{Gm(r)\ \rho(r)}{r^2} \tag{20}
$$

• enclosed mass $m(r) = 4\pi \int r^2 \rho(r) dr$ depends on ρ

- \bullet so righthand side depends only on ρ and r
- for polytrope $P(\rho)$ depends only on ρ
- \bullet so lefthand side also depends only on $\rho(r)$

lesson: this equation ultimately depends only on ρ and r solving it gives $\rho(r)$: determines star density structure!

note that this won't work if $P = P(\rho, T)$
then need to find temperature $T(\Delta)$ tee then need to find temperature $T(r)$ too this is what's special about ^a polytrope