
Astro 404

Lecture 26

Oct. 28, 2019

Announcements:

• Problem Set 8 due Fri Nov 1

Last time: degenerate stars – white dwarfs

• hydrostatic support from degeneracy pressure

example of a polytrope Q: what’s that?

• thermal structure decoupled from mechanical structure

Q: what does this mean?

• non-relativistic degenerate stars Q: P(ρ)?

Q: size R vs mass M? implications?1



Polytropes, Degenerate Matter, and White Dwarfs

polytrope: matter where pressure depends only on density

that is, equation of state has form P(ρ) and not P(ρ, T)

degenerate matter is example of this

usually polytropes are approximately power laws: P = Kργ

in this case, hydrostatic equilibrium alone determines ρ(r)

that is: hydrostatic force balance alone sets mass distribution

independent of interior temperature, indeed for T = 0, so:

mechanical structure ρ(r) independent of thermal structure T(r)

non-relativistic degenerate electron matter:

Pe,nr = Ke,nr n
5/3
e = Knr,degen ρ5/3

gives R ∝ M−1/3: higher mass ↔ smaller white dwarf!
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Relativistic Degenerate Stars

for (ultra)relativistic degenerate stars

electrons have Fermi momentum p0 ≫ mec, and

Pe,rel = Ke,rel n
4/3
e = Knr,degen ρ4/3

only one mass gives hydrostatic equilibrium

Chandrasekhar mass

M = MChandra = 1.4M⊙ for helium-like matter

www: Chandrasekhar (1931) paper – you can understand this!

highest mass for which degeneracy pressure can overcome gravity

at larger masses, stars are unstable and collapse!

Q: how to test this prediction with white dwarf data?
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iClicker Poll: White Dwarf Masses

Vote your conscience! All answers get credit

white dwarf masses are observed in hundreds of binary systems

What do we find?

A most masses Mwd < 1M⊙, none > MChandra

B most masses 1M⊙ < Mwd < MChandra, none > MChandra

C roughly equal masses up to MChandra

D about 10% of white dwarfs have Mw > MChandra
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White Dwarf Masses Observed

observed white dwarf masses

• most found at Mwd
<∼ 1M⊙

but there is an observational bias

• white dwarf cooling sequence: Lwd = 4πR2σT4
eff ∝ M−2/3T4

eff
less massive are more luminous – easier to find

but even after accounting for this bias

• true distribution dominated by < 1M⊙ white dwarfs

• no white dwarfs found with M > 1.4M⊙

implications:

• Chandrasekhar mass truly limits white dwarf masses

• lack of high mass WDs suggests either

these are rarely made, or these don’t survive when made
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Dynamical Stability of Stars

Why do relativistic degenerate stars become unstable
while non-relativistic degenerate stars do not?

look at response to perturbations

consider a star, mass M and radius R

in hydrostatic equilibrium

mass shell m at radius r(m) feels weight per area

P = Pgrav =

∫ M

m

m dm

4πr4

where dm = 4πr2 ρ dr or

ρ =
1

4πr2
dm

dr
compress shell a small amount:

r′ = r − ǫr = (1 − ǫ)r

Q: response of gas Pgas? Pgrav
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compress shell a small amount r′ = r − ǫr = (1 − ǫ)

while hold shell enclosed mass m fixed

gravitational response: weight per area

P ′
grav =

∫ M

m

m dm

4π(1 − ǫ)4r4
= (1 − ǫ)−4P ≈ (1 + 4ǫ)P

where we used (1 − ǫ)s ≈ 1 − sǫ + · · ·

’
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gas pressure response:

ρ′ =
1

4π(1 − ǫ)2r2
dm

dr′
= (1 − ǫ)−2 1

4πr2
dm

dr

dr

dr′
=

ρ

(1 − ǫ)3
≈ (1 + 3ǫ)ρ

for a polytrope: P = Kργ, so

P ′
gas = K(ρ′)γ ≈ (1 − ǫ)3γP ≈ (1 + 3γǫ)P (1)
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so after perturbation r′ = (1 − ǫ)r

new pressures are in general no longer the same

so look at pressure difference

P ′
gas − P ′

grav ≈ (1 + 3γǫ)P − (1 + 4ǫ)P

=

(

γ −
4

3

)

3ǫP
’

R
r

m

M
ρ

r’

m

ρ

Q: response if ǫ = 0?

Q: response if γ > 4/3?

Q: response if γ < 4/3?

Q: implications?
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Polytropic Index and Dynamical Stability

after radial compression r′(m) = (1 − ǫ)r(m):

P ′
gas − P ′

grav ≈ (1 + 3γǫ)P − (1 + 4ǫ)P =

(

γ −
4

3

)

3ǫP (2)

if γ > 4/3

outward gas pressure grows faster

than inward weight per area due to gravity of outer layers

net outward pressure: gas expands back to original size

restoring force opposes perturbation → stable equilibrium

if γ < 4/3

net inward pressure: restoring force enhances perturbation

runaway → equilibrium not restored → dynamically unstable!
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if γ = 4/3

no restoring force at all!

but this means perturbation not undone

lesson: instability if γ ≤ 4/3!

so for white dwarfs: degenerate stars

• low mass ↔ Fermi momentum p0 < mec

degenerate electrons are non-relativistic

P ∝ ρ5/3: γ = 5/3 means stability!

• but as mass increases, Fermi momentum p0 increases

to p0 ≥ mec: electrons become relativistic

• as M → MChandra, then γ → 4/3

fully relativistic → unstable!1
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Star Formation: Birth to Main Sequence

1
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Star Formation

the formation of stars (and planets) remains mysterious

deserves its own course: Astronomy 405

offered this coming semester!

here: we sketch some highlights

so you see how (proto)stars approach the main sequence

basic idea:

• huge, low-density interstellar gas clouds

• collapse under their own gravity

• and likely fragment into “protostellar cores”

• which contract until nuclear reactions ignite to signal

marking the zero age main sequence
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iClicker Poll: Fuel for Star Formation

interstellar gas clouds exist in several forms

Which of these is most favorable to gravitational collapse?

Hint: we now want to be out of hydrostatic equilibrium!

A ionized gas: mostly free p and e

B atomic gas: mostly H = pe atoms

C molecular gas: mostly H2 = HH molecules

1
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Conditions for Cloud Collapse

to collapse, clouds must not be in hydrostatic equilibrium!

gravity must overwhelm pressure gradients

at low interstellar densities: classical ideal gas (non-degenerate)

P = n kT : low T means low P

but kT also sets particle kinetic energy scales

compare to binding energy

B = energy to tear gas particle apart

• molecular hydrogen: B(H2) = 4.5 eV

• atomic hydrogen: B(H) = 13.6 eV

• ionized hydrogen: already torn apart–unbound!

Q: lessons?
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Molecular Gas is Star Formation Fuel

lessons:

• molecular hydrogen has smallest binding energy

requires coldest temperatures to survive collisions

• as T rises, molecules → torn to atoms → torn to ions

• collapse and star formation most likely in molecular gas

our Galaxy and other galaxies contain giant molecular clouds

• made mostly of molecular hydrogen H2

• but most easily seen via CO carbon monoxide molecules

• typical giant molecular cloud conditions

• mass M ∼ 105M⊙, size R ∼ 10 pc, temperature T ∼ 20 K

can be opaque to optical light, visible in IR and radio

www: molecular clouds

1
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Conditions for Collapse

consider a cloud of mass M , radius R, temperature T

with average particle mass mg

Sir James Jeans (1902): when does collapse occur?

if hydrostatic equilibrium → Virial theorem

GM2

R
∼ NkT =

M

mg
kT

Q: condition for gravitational collapse?

Q: critical radius? critical density?

Q: which is easier to collapse–large cloud or small?
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Gravitational Instability

condition for equilibrium: Virial theorem

GM2

R
∼ NkT =

M

mg
kT

gravitational collapse requires disequilibrium: Jeans instability

GM2

R
≫ NkT =

M

mg
kT

R ≪ RJ =
GmgM

kT
(3)

ρ ≫ ρJ ∼
M

R3
J

∼
(

kT

Gmp

)3
1

M2
(4)

Jean mass, radius, and density

ρJ ∝ 1/M2: highest mass has lowest critical density

Q: timescale for collapse?

1
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Initial Collapse: Freefall

Initially, Jeans unstable cloud:

• has large gravitational potential energy

• by definition, has negligible thermal pressure

• has low density: long mean free path ℓmfp = 1/nσ

for photons inside cloud

so collapse begins in free fall – gravity unopposed

with gravitational (dynamic) timescale (PS2)

τff ∼
1

√
Gρ

frefall continues until gravitational energy trapped

and turned into random motions → thermalized

Q: condition for trapping energy/heat?

Q: other nonthermal work the released energy can do?
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From Freefall to Thermalization

collapse → heating: higher T → blackbody flux F ∝ T4

but at first, photon mean free path ℓ = 1/nσ >∼ R

“optically thin” → radiation escapes: cloud cools

when density increases, ℓ <∼ R and energy trapped

but can be used to break bounds

unbind Hs and ionized H

if a fraction X ≈ 0.75 of gas mass is hydrogen

• energy to dissociate H2 molecules: E(H2) = XM/2mp B(H2)

• energy to ionize H atoms: E(H) = XM/mp B(H)

• total energy to reach full ionization Eion = E(H2) + E(H)

• leaves gas at temperature set by EionN kT = M kT/mg

kT ∼ X

(

1

2
B(H2) + B(H)

)

∼ k × 30,000 K (5)

1
9


