Astro 404 Lecture 27 Oct. 30, 2019

Announcements:

- Problem Set 8 due Fri Nov 1
- Typo Fixed Tue Morning Q1(b) should read "find $d/dr(r^2 d\rho/dr)$ " – correct version posted
- Office Hours: Instructor after class or by appointment
- TA: Thursday noon-1pm or by appointment

Last time: star formation

Q: what's the fuel for making stars? why?

 \vdash

Molecular Gas is Star Formation Fuel

lessons:

- molecular hydrogen has smallest binding energy requires coldest temperatures to survive collisions
- \bullet as T rises, molecules \rightarrow torn to atoms \rightarrow torn to ions
- collapse and star formation most likely in molecular gas

our Galaxy and other galaxies contain giant molecular clouds

- made mostly of molecular hydrogen H₂
- but most easily seen via CO carbon monoxide molecules
- typical giant molecular cloud conditions
- mass $M \sim 10^5 M_{\odot}$, size $R \sim 10$ pc, temperature $T \sim 20$ K can be opaque to optical light, visible in IR and radio

Ν

www: Orion giant molecular cloud

Conditions for Collapse

consider a cloud of mass M, radius R, temperature T with average particle mass m_g

Sir James Jeans (1902): when does collapse occur?

if hydrostatic equilibrium \rightarrow Virial theorem

$$\frac{GM^2}{R} \sim NkT = \frac{M}{m_{\rm g}}kT$$

Q: condition for gravitational collapse?

Q: critical radius? critical density?

 $^{\omega}$ Q: which is easier to collapse–large cloud or small?

Gravitational Instability

condition for equilibrium: Virial theorem

$$\frac{GM^2}{R} \sim NkT = \frac{M}{m_{\rm g}}kT$$

gravitational collapse requires *dis*equilibrium: Jeans instability

$$\frac{GM^2}{R} \gg NkT = \frac{M}{m_g}kT$$

$$R \ll R_J = \frac{Gm_g M}{kT}$$
(1)

$$\rho \gg \rho_{\rm J} \sim \frac{M}{R_{\rm J}^3} \sim \left(\frac{kT}{Gm_p}\right)^3 \frac{1}{M^2}$$
(2)

Jean mass, radius, and density

P $\rho_J \propto 1/M^2$: highest mass has lowest critical density *Q: timescale for collapse?*

Initial Collapse: Freefall

Initially, Jeans unstable cloud:

СЛ

- has large gravitational potential energy
- by definition, has negligible thermal pressure
- has low density: long mean free path $\ell_{\rm mfp}=1/n\sigma$ for photons inside cloud

so collapse begins in free fall – gravity unopposed with gravitational (dynamic) timescale (PS2)

$$au_{
m ff} \sim rac{1}{\sqrt{G
ho}}$$

real interstellar clouds have *nonuniform density*

Q: if there are density fluctuations, how does collapse proceed? Q: what does this mean for the collapsing cloud?

Fragmentation: Birth of Protostars

freefall time: $\tau_{\rm ff} \sim 1/\sqrt{G\rho}$ for non-uniform density cloud:

- high- ρ regions have shortest $\tau_{\rm ff}$: collapse fastest
- \bullet in these high- ρ regions, collapse makes density even higher even faster collapse
- \bullet and high- ρ substructures collapse faster still

overall picture: cloud fragmentation
into many smaller collapsing objects
and highest density knots collapse fastest → protostars
www: protostars in Eagle Nebula

frefall continues until gravitational energy trapped and turned into random motions \rightarrow thermalized

Q: condition for trapping energy/heat?

σ

Q: other nonthermal work the released energy can do?

From Freefall to Thermalization

collapse \rightarrow heating: higher $T \rightarrow$ blackbody flux $F \propto T^4$ but at first, photon mean free path $\ell = 1/n\sigma \gtrsim R$ "optically thin" \rightarrow radiation escapes: cloud cools

when density increases, $\ell \lesssim R$ and energy trapped but can be used to break bounds unbind H_s and ionized H

if a fraction $X \approx 0.75$ of gas mass is hydrogen

1

- energy to dissociate H₂ molecules: $E(H_2) = XM/2m_p B(H_2)$
- energy to ionize H atoms: $E(H) = XM/m_p B(H)$
- total energy to reach full ionization $E_{ion} = E(H_2) + E(H)$
- leaves gas at temperature set by $E_{\rm ion}N~kT = M\,kT/m_{\rm g}$

$$kT_{\text{ionized}} \sim X\left(\frac{1}{2}B(H_2) + B(H)\right) \sim k \times 30,000 \text{ K}$$
 (3)

The Hayashi Limit

Chushiro Hayashi (1960's): as protostars collapse in near-freefall interior well-mixed → uniform temperature [star is fully convective – see below]

while gravitational energy release used to ionize star temperature remains nearly constant until T_{ionized}

iClicker Poll: Protostars and the H-R Diagram

while protostars in freefall temperature nearly uniform out to photosphere and nearly constant despite contraction

How will protostar luminosity change?

- A *L* increases with collapse
- **B** *L decreases* with collapse

Q

- C L nearly constant with collapse
- Q: how will this appear on H-R diagram?

Protostars on the H-R Diagram

if T uniform and nearly constant during collapse

- the $L = 4\pi R^2 \sigma T^4 \propto R^2$: contraction decreases L
- on H-R diagram (T_{eff}, L) : nearly vertical drop on "Hayashi track"
- until minimum *L* when fully ionized

then: further collapse raises temperature (and density) until nuclear reactions begin

- temperature becomes non-uniform (hotter in core)
- protostar luminosity gradually increases
- until collapse halted entirely: hydrostatic equilibrium at last!
 - star joins main sequence! "zero age main sequence"

the Main Sequence Across Stellar Masses

main sequence recap:

- longest-lived stellar phase
- in hydrostatic equilibrium
- pressure support non-degenerate
- low mass stars: gas pressure dominates high mass stars: radiation pressure dominates
- luminosity powered by core hydrogen fusion

evolution on main sequence:

- as core hydrogen depleted
- $(\rho_{\rm C}, T_{\rm C})$ increase $\rightarrow L$ increase
- main sequence brightening

future star evolution depends crucially on size and mass of helium core ash of hydrogen burning which is depends on mixing during main sequence phase

Buoyancy and Gas Transport

Archimedes principle: buoyancy of object in fluid
 equal to weight of displaced fluid
 so a low-density blob
 has less mass and weight for its volume
 → positively buoyant → rises

we have seen: stars stratified inward towards core: increased ρ , T, P

consider blob of gas in star, displaced upward expands to match lower surrounding pressure *Q: what if new blob density higher than surroudings?*

- Q: and if it is lower?
- \mathbb{R} Q: condition for stability?
 - Q: effect of instability?

Convection and Stability

upward displaced blob comes into pressure equilibrium:

- if new blob density > surrounding fluid:
 negatively buoyant → sinks back down: stable
- if new blob density < surrounding fluid:
 positively buoyant → continues to rise: unstable

convection: www: solar granulation rising hot blob, sinking cooler blobs examples: air above flame, soup on stove -T high at base instability due to strong temperature gradient

convective motions:

- mix material
- transport heat

Ц

• reduce temperature gradient

convective zone

Adiabatic Gas

consider a *blob of gas* that *expands or contracts without exchanging energy with its environment* for example, rapid change, not time to radiate energy

no energy exchange: total energy (heat) constant internal energy changes due to pdV work

$dU = -P \, dV$

non-relativistic, nondegenerate ideal gas: U = 3/2 PVrelativistic, nondegenerate gas: U = 3 PV

for U = w PV:

$$w d(PV) = wP dV + V dP = -P dV$$
(4)

$$w V dP = -(w+1) P dV$$
(5)

 $\frac{dP}{P} = -\frac{w+1}{w}\frac{dV}{V}$

(6)

so for an adibatic change (no heat exchange)

$$\frac{dP}{P} = -\frac{w+1}{w}\frac{dV}{V} \tag{7}$$

$$\log P = -\frac{w+1}{w} \log V + C \tag{8}$$

$$P \propto V^{-(w+1)/w} \tag{9}$$

 $P_{\text{adiabatic}} = K \rho^{(w+1)/w}$ (10)

for adiabatic changes: pressure set by density alone! proportionality K depends on gas heat content

non-relativistic, nondegenerate ideal gas: w = U/PV = 3/2

 $P_{\rm adiabatic,nr} \propto
ho^{5/3}$

relativistic, nondegenerate gas: w = 3

 $P_{\rm adiabatic,rel} \propto \rho^{4/3}$

same scalings as for degenerate cases!

Convection in Stars

When does convection set in? Depends on pressure gradient

consider blob a radius r with $\rho(r)$ and P(r)displaced upward: $r \rightarrow r' = r + \delta r$

- rapid motion → adiabatic change
- expands to pressure equilibrium at new location new pressure $P_{blob} = P(r')$

Q: what if region has $P < K \rho^{\gamma}$?

Q: what if region has
$$P > K \rho^{\gamma}$$
?

16

blob initially has $\rho(r)$ and P(r)displaced, new regions has $P(r') = P(r + \delta r)$ adiabatic expansion: $P(r') = P_{blob} = K \rho_{blob}^{\gamma}$

if star region has $P = K \rho^{\gamma}$, then:

- $P(r') = K\rho(r')^{\gamma}$
- so surrounding medium has $\rho(r') = \rho_{blob}$
- *neutrally buoyant no further motion*

if $P(r') > K\rho(r')^{\gamma}$ then $\rho_{blob}^{\gamma} > \rho^{\gamma}(r')$ so $\rho_{blob} > \rho(r')$ negatively buoyant \rightarrow convectively stable

if $P(r') < K \rho(r')^{\gamma}$ then $ho_{blob} <
ho(r')$

 \exists positively buoyant \rightarrow convectively unstable! Q: conclusion-when does convection occur?

Convection and Adiabatic Gradients

lesson:

- convection occurs when $P(r') < K\rho(r')^{\gamma}$
- •when P decreases with r more steeply than adiabatic

ideal gas: $P = \rho kT/m_g$ so adibatic gas with $P_{ad} \propto \rho^{\gamma} \propto (P_{ad}/T)^{\gamma}$ has $P_{ad} \propto T^{\gamma/(\gamma-1)}$

convection condition:

 $dP/P < dP_{ad}/P_{ad} = \gamma/(\gamma - 1) dT/T$, so temperature gradient

$$\frac{dT}{dr} > \frac{\gamma - 1}{\gamma} \frac{T}{P} \frac{dP}{dr}$$
(11)

so *steep temperature gradient leads to convection* and then flows mix material, smooth the temperature gradient

18