Astro 404 Lecture 29 Nov. 4, 2019

Announcements:

• Problem Set 9 due Fri Nov 8

not part of course but of interest:
Astronomy Colloquium Tue Nov 5, 3:45pm
Nan Liu, Washington U. St. Louis
"Laboratory Astronomy Using Microscopes"
stardust in the lab!

Astro Courses for Spring 2019

your ASTR404 superpowers definitely qualify you for

- ASTR 405: Planetary Systems with Prof. Wong here especially, 404 knowhow will pay off!
- ASTR 414: Astronomical Techniques with Prof. Shen

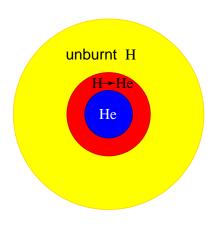
and you might consider (talk to instructor)

- ASTR 596 AST: Fundamentals of Data Science Astrostatistics from Prof. Narayan
- ASTR 507: Physical Cosmology Prof. BDF

Last time:

lives of stars after the Main Sequence

Part I: low-mass stars, including the Sun


Q: what happens to core when it is entirely helium?

Q: contrast core vs envelope?

Hydrogen Shell Burning

as helium core contracts

- H material overlying core also contracts, heats new fuel, can begin to fuse!
 - → H burning in shell around core

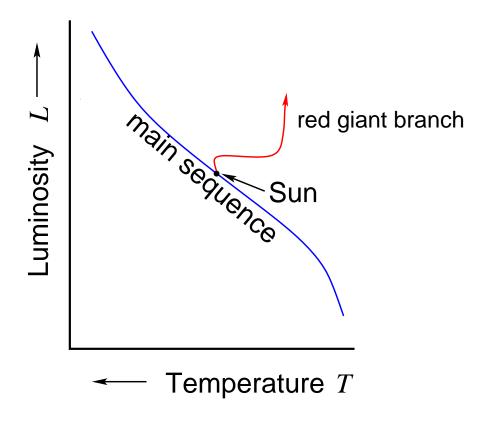
H shell burning occurs above degenerate core

- high density and temperature: high L
- increases mass of He core, shell thins and propagates out

Q: response of outer layers—envelope?

Red Giant Phase

injection of energy in shell throws envelope out of equilibrium

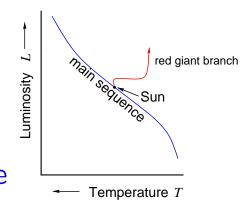

- ullet star outer layers expand by factor ~ 100
- so surface $T_{\rm eff} \propto L^{1/4}/R^{1/2}$ drops
- star becomes red giant
- for Sun: red giant radius $R_{\rm RG} \simeq 1$ au (PS9) Mercury and Venus consumed, unclear if Earth will survive!

"mirror" effect of shell burning:

- core contraction, envelope expansion
- total gravitational potential energy Ω roughly conserved core becomes more tightly bound, envelope less bound

Q: movement of star on HR diagram?

HR Diagram: Red Giant Phase


www: Gaia observed HR diagram for field stars

Q: how to test?

0

Red Giants

shell burning accelerates $\to L$ increase envelope temperature levels off $\to revisit\ Hayashi\ track$ but now with increasing luminosity

RG phase takes most of remaining star lifetime after main sequence: $\tau_{RG,\odot} \sim 2$ Gyr for Sun

degenerate helium core: "baby white dwarf"

- mass $M_{\rm He}$ increases due to shell burning ${\rm H}{\rightarrow}^4{\rm He}$
- \bullet core radius follows non-relativistic white dwarf scaling $R_{\rm He} \propto 1/M_{\rm He}^{1/3}$
- core contracts: density and temperature increase

Q: what happens next?

7

Core Helium Ignition

core temperature and density increase until ⁴He can fuse ...but how?

Q: what 2-body reaction(s) possible?

Q: challenges?

Helium Burning: Challenges

2-body reaction ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be} + \gamma$ possible, but...

- this reaction is (just barely) endothermic:
 must supply energy to go
- nuclear physics: no stable nuclei with mass A=5 and A=8 so ^8Be unstable: radioactive! $^8\text{Be} \rightarrow ^4\text{He} + ^4\text{He}$ with lifetime $\tau_8=8\times 10^{-16}$ sec

other 2-body reactions even more disfavored

• Q: solutions?

The Triple-Alpha Reaction

in degenerate helium core

- density high
- temperatures high

3-body reactions possible

reaction proceeds in 2 steps

4
He $+ ^{4}$ He \leftrightarrow 8 Be $+ ^{\gamma}$
 8 Be $+ ^{4}$ He \rightarrow 12 C $+ ^{\gamma}$

net result: ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C}$

- "triple alpha" with ${}^{4}\text{He} = \alpha$ shorthand
- net effect exothermic
- but less energy release than in H burning

iClicker Poll: Density Scaling of 3α

triple alpha: $3^4He \rightarrow {}^{12}C$

consider energy production rate: luminosity density What is dependence on density?

$$A$$
 $\mathcal{L} \propto \rho$

$$\mathcal{L} \propto \rho^2$$

$$\mathcal{L} \propto \rho^3$$

$$\mathcal{L} \propto \rho^4$$

Helium Ignition

triple alpha: $3^4 \text{He} \rightarrow {}^{12}\text{C}$

stellar recycling: helium ash of hydrogen burning becomes fuel for helium burning to carbon

helium ignition occurs in degenerate core

luminosity density

$$\mathcal{L}(3\alpha \rightarrow ^{12}C) \propto \rho^3 T^{19}$$

- huge density and temperature sensitivity
- favors first ignition in densest, hottest parts of core

once 3α burning ignited:

 $^{\bowtie}$ Q: effect on T? on P? on ρ ?

Q: and so how does burning proceed?

The Helium Flash

triple alpha luminosity density

$$\mathcal{L}(3\alpha \rightarrow ^{12}C) \propto \rho^3 T^{19}$$

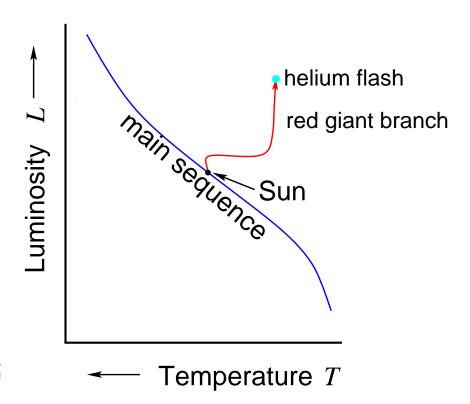
favors ignition first in densest, hottest parts of core

ignition injects nuclear energy as heat

- raises T
- but degenerate core: P nearly independent of T so P and ρ almost unchanged \rightarrow core does not expand! contrast with stable H burn in Sun: ideal gas
- ullet so nuclear burning $\propto T^{19}$ goes *even faster!*

this is a runaway process!

result is fast and violent: explosion in star core!


Helium Flash

when degenerate core mass reaches $M_{\rm He}=0.5M_{\odot}$, helium ignition starts runaway

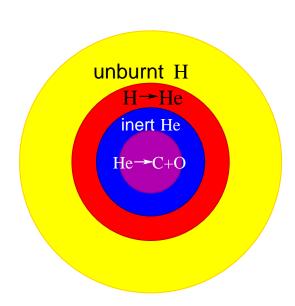
- innermost He core burned to ¹²C in seconds!
 until core hot enough that degeneracy lifted becomes ideal gas and expands, slows burning
- huge energy release: $L \sim 10^{11} L_{\odot}$ internal explosion: helium flash
- but energy absorbed by envelope only escapes on diffusion timescale explosion not visible externally! aargh!

Tip of the Red Giant Branch

He flash marks maximum rise of luminosity "tip of the red giant branch"

Core Helium Burning

after helium flash, triple alpha continues in core with stable, non-explosive burning

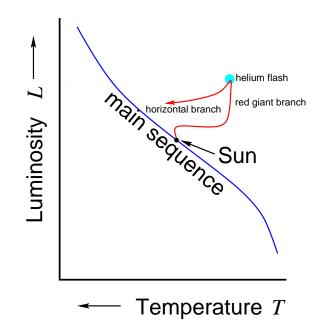

4
He $+$ 4 He $+$ 4 He \rightarrow 12 C $+$ γ

but also: when ¹²C begins to build up

⁴He +
12
C \rightarrow 16 O + γ

net result: core converts $^4\text{He} \rightarrow ^{12}\text{C}, ^{16}\text{O}$ luminosity higher than on main sequence

meanwhile: shell hydrogen burning continues adding to mass of helium core


Horizontal Branch

core He burning: long-lived phase but much shorter than core H burning

- $3\alpha \rightarrow {}^{12}\text{C}$ energy release much lower
- higher luminosity: faster fuel consumption

after core helium burning begins envelope contracts

on HR diagram: lower L and higher T horizontal branch

iClicker Poll: Fate of Carbon+Oxygen Core

at the end of core helium burning, star core is carbon+oxygen

Vote your conscience!

What's the fate of the CO core?

- A contracts until a new burning phase begins
- B contracts until degenerate without further burning
- contracts until catastrophic collapse

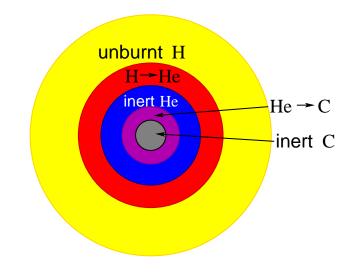
Core Helium Exhaustion

fate of the star after core helium exhaustion CO core contracts, becomes degenerate

what's next depends on star mass

for solar mass stars: degenerate CO supports core but does not achieve conditions for further burning

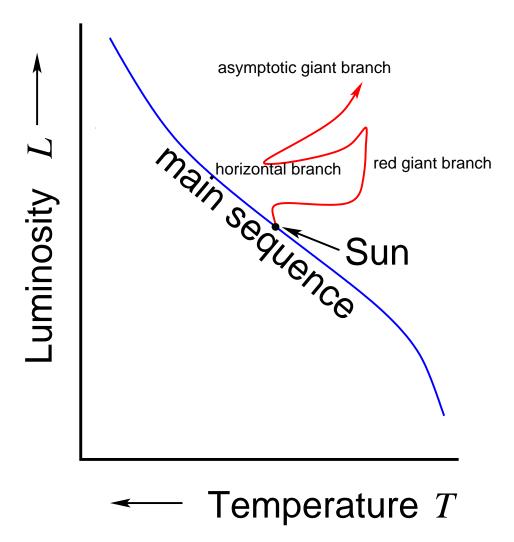
we consider this case first, higher masses next


for solar mass stars:

Q: response to CO core contraction?

Burning in Two Shells

for solar mass stars: after CO core forms


- helium shell burning begins
- hydrogen shell burning continues

note similarity to end of main sequence

- shell burning raises luminosity dramatically
- shell "mirroring" effect → envelope expands again
- on HR diagram: again approaches giant branch asymptotic giant branch star

HR Diagram: Asymptotic Giant Branch

Mass Loss

in Red Giant and AGB phases

- high luminosity
- large envelope with low density and temperature

envelope cool enough to form *atoms* then forms *molecules* then forms microscopic solids: *dust*

these absorb the light: driven by radiation pressure star develops wind wwwMira much stronger than on Main Sequence and most intense in AGB phase: superwind

ightarrow drives off \sim 50% of star's mass

Q: how can we tell?

Planetary Nebula

effects of red giant wind and AGB superwind

- mass loss exposes stellar core!
- outer layers unbound, driven away escape to interstellar space
- gas nearest star illuminated by hot core
 UV radiation excites atoms: re-emit lines
 as in neon lamp

observationally: extended emission around star often disk geometry – looks like planet planetary nebula

www: planetary nebula

The End: White Dwarf

remaining degenerate core is white dwarf

- supported by degeneracy pressure
- initially hot, cools over time

if no companion: cools indefinitely eventually will crystalize \rightarrow phase transition to lattice

if a companion: fate depends on mass transfer