Astro 404 Lecture 31 Nov. 8, 2019

Announcements:

- Problem Set 9 due today typo corrected in L24 notes: $n_Q = (2\pi m kT/h^2)^{3/2}$
- Problem Set 10 due next Friday Oct 15

Last time: down with solar-mass stars! onward to massive stars! *Q: what for us are high-mass stars?*

Massive Star Demographics

in our context, massive: $M \gtrsim 8 - 10 M_{\odot}$ that is: destined to become core-collapse supernovae

PS10: study initial mass function distribution of star birth masses

- massive stars are $\sim 0.5\%$ by *number* of all stars born
- but comprise ~ 10% of mass going into stars
 Q: how can these both be true?

lesson: massive stars are rare but spectacular celebrities of the cosmos

ω

Massive Stars: Radiation Pressure

radiation force on electron with cross section σ_e (PS1):

$$F_{\rm rad} = P_{\rm rad}\sigma_e = \frac{L\sigma}{4\pi r^2 c} \tag{1}$$

inverse square law! same as gravity but repulsive!

radiation force balances gravity on e + p pair when

$$L = L_{\mathsf{Edd}} = \frac{4\pi G M m_p c}{\sigma} \tag{2}$$

Eddington luminosity

Q: what if
$$L > L_{Edd}$$
?

Massive Stars and the Eddington Luminosity

Eddington luminosity: $F_{rad} = F_{grav}$ when

$$L = L_{\mathsf{Edd}} = \frac{4\pi G M m_p c}{\sigma} \tag{3}$$

if $L > L_{Edd}$: radiation pressure stronger than gravity! star pushes its own atmosphere away

→ Eddington gives *maximum stable luminosity*

PS7: massive stars have L very near L_{Edd} !

near the edge of stability!

СЛ

- drive strong winds even during main sequence
- mass loss important (and uncertain) over entire star life

Q: consequences of strong mass loss?

The Highest(?) Masses: Wolf-Rayet Stars

for the very highest masses: $M \gtrsim 30 M_{\odot}$? and with solar composition

- * mass loss very strong even in main sequence
- \star reduces star mass \rightarrow converge to $30M_{\odot}$?
- ★ hydrogen envelope can be completely removed and *helium core exposed* (and sometimes deeper)
- \star wind material shows nucleosynthesis products
 - e.g., CNO cycle abundance pattern: nitrogen rich

observed at *Wolf-Rayet* stars

- www: Wolf-Rayet wind
- $^{\circ}\,$ eta Carinae: initially 120 $M_{\odot}?\,$ now $\sim 100M_{\odot}\,$ www: eta Carinae

iClicker Poll: Massive Stars on the HR Diagram

evolution drives $L \to L_{\mathsf{Edd}} \propto M$

Implications for a given mass on HR diagram?

A HR evolution nearly horizontal

- B HR evolution nearly vertical
- С
- HR evolution keeps L/T_{eff} fixed

Massive Stars on the HR Diagram

evolution drives $L \to L_{\mathsf{Edd}} \propto M$

also recall: main sequence is sequence in mass so on main sequence, for all stars: L grows with mass

and for massive stars:

 $L \rightarrow L_{\text{Edd}}$ fixed by mass (roughly) on MS and beyond

so post-main-sequence evolution changes T_{eff} but not $L \rightarrow$ motion on HR diagram is horizontal

Massive Stars: Burning Phases

Main sequence: hydrogen burning

- \bullet convective core \rightarrow fuel circulation
- $T_c \gtrsim 2 imes$ hotter than Sun
- burn $p \rightarrow {}^{4}$ He via CNO cycle avoid Weak $pp \rightarrow de\nu$: goes much faster

when core hydrogen exhausted:

core contracts, smoothly begins burning helium non-degenerate, no helium flash with hydrogen burning in shell star becomes a supergiant www: Betelgeuse imaged

ဖ

Massive Stars on the HR Diagram: Supergiants

When core He exhausted, begin cycles:

- contract
- ignite new shell burning
- \bullet ignite ash \rightarrow fuel in core
- burn core to exhaustion repeat...

develop "onion skin" structure: www: pre-SN favors " α -elements" : tightly bound

C burning:	$^{12}C + ^{12}C$	\rightarrow	20 Ne + α
Ne burning:	20 Ne + γ	\rightarrow	$^{16}O + \alpha$
	20 Ne + α	\rightarrow	24 Mg + γ
	$^{24}Mg + \alpha$	\rightarrow	²⁸ Si + γ
O burning:	$^{16}O + ^{16}O$	\rightarrow	²⁸ Si + α
		\rightarrow	$^{32}S + \gamma$

 $\frac{1}{1}$

Neutrino Cooling

At $T \gtrsim 5 \times 10^8$ K (C burn): neutrinos produced via $e^+e^- \rightarrow \nu\bar{\nu}$ much slower than $e^+e^- \rightarrow \gamma\gamma$ yet still crucial *Q: why?*

neutrino production rate per volume:

$$q_{\nu} = \langle \sigma v n_e^2 \rangle \sim T^2 \times (T^3)^2 \sim T^8 \tag{4}$$

 ν escape \rightarrow dominate *E* loss: **neutrino cooling**

neutrino *E* loss rate per vol: $\varepsilon_{\nu} = E_{\nu}q \sim T^9$ equilibrium: $\varepsilon_{\text{emit},\nu} = \varepsilon_{\text{released,nuc}}$ $\stackrel{t_{\nu}}{\rightarrow} L_{\nu} \sim (1 - 10^6)L_{\gamma}$ for C thru Si burning: **neutrino star!**

iClicker Poll: Effect of Neutrino Losses

when neutrino emission dominates total luminosity: What is effect on burning phases?

- A neutrino star burning phases last a *longer* time than if no neutrinos emitted
- B neutrino star burning phases last a *shorter* time than if no neutrinos emitted
- C neutrino star burning phases last the *same* time than if no neutrinos emitted

Si Burning

neutrino emission removes energy from core "steals" nuclear energy now unavailable to heat star shortens burning phases—final stages: months, days

 $T\sim 4\times 10^9$ K \rightarrow photon energy density $\epsilon_\gamma\sim T^4$ large photodisintegration $^{28}{
m Si}+\gamma \rightarrow p,n,\alpha$

- 1. $\gamma {\rm s}$ take p,n,α from weakly bound nuclei
- 2. these recombine with all nuclei
- 3. flow \rightarrow more tightly bound

Net effect: redistribute to most tightly bound nuclei

Binding Energy Patterns

recall: binding energy B_i is energy required to tear nucleus to protons and neutrons

note that larger nuclei have large B_i , but shared among more nucleons

consider: **binding energy per nucleon** B/A*Q: what does this represent physically?*

Nuclear Stability: Binding Energy

For stable nuclei:

- sharp rise in B_i/A_i at low A
- local max at ⁴He
- no stable nuclei at A = 5,8
- lowest B/A for D, LiBeB
- max B/A for middle masses:
- peak at ⁵⁶Fe

Nuclear Equilibrium

nuclear reactions drive core to equilibrium dominated by most stable nuclei possible \rightarrow most tightly bound

max abundance \rightarrow largest nuclear binding: "iron peak"

core dominated by iron and nickel

An now the end is imminent. *Q: why?*

Iron Core Evolution

can't burn $Fe \rightarrow degenerate \ core$ support: *e* degeneracy pressure—core is iron white dwarf! first time a massive star core is degenerate

stable briefly, but...

do burn Si in overlying shell \rightarrow increase Fe core mass when $M_{\rm Core} > M_{\rm Chandra} \rightarrow$ core unstable

begins to collapse

Core Collapse

upon collapse: iron core disintegrated by photons e.g., ${}^{56}\text{Fe}{\rightarrow}13lpha+4n$

huge density: electrons have high Fermi energy \rightarrow favorable to get rid of them!

electrons capture onto protons $e^- + p \rightarrow n + \nu_e$ and onto nuclei $e^- + Z_A \rightarrow Z - 1_A + \nu_e$ "neutronization" or "deleptonization"

removes e and so reduces degeneracy pressure!

- accelerates collapse (positive feedback)
- also: releases ν_e

Collapse Dynamics

Freefall timescale for material with density ρ (PS4):

$$au_{
m ff} \sim rac{1}{\sqrt{G
ho}} \sim 446 \,\, {
m s} \sqrt{rac{1 \,\, {
m g/cm^3}}{
ho_{
m cgs}}} \lesssim 1 \,\, {
m sec}$$

but pre-supernova star very non-uniform density *Q: what does this mean for collapse?*

inner core: homologous collapse $v \propto r$ outer core: quickly becomes supersonic $v > c_s$ outer envelope: unaware of collapse

$$_{N}$$
 Q: what (if anything) stops collapse?

Bounce and Explosion

core collapses until $\rho_{core} > \rho_{nuc} \sim 3 \times 10^{14} \text{ g/cm}^3$ repulsive sort-range nuclear force dominates: *"incompressible"* details depend on equation of state of nuke matter

1. *core bounce* \rightarrow proto neutron star born

- 2. shock wave launched
- 3. a miracle occurs
- 4. outer layers *accelerated Demo: AstroBlaster*[™]
- 5. successful explosion observed

 $ightarrow v_{ej} \sim 15,000 \text{ km/s} \sim c/20!$

Why step 3? What's the miracle? "prompt shock" fails: do launch shock, but • overlying layers infalling \rightarrow ram pressure $P = \rho v_{in}^2$ • dissociate Fe \rightarrow lose energy shock motion stalls \rightarrow "accretion shock" "prompt explosion" mechanism fails

Q: what needed to revive explosion?

Delayed Explosion Mechanisms

"delayed explosion" to revive: neutrinos, 3-D hydro/instability, rotation effects? some models not work, but controversial

Energetics:

 $E_{\rm ejecta} \sim M_{\rm ej} v^2 \sim (10 M_\odot) (c/20)^2 \sim 10^{51} \text{ erg} \equiv 1$ foe but must release gravitational binding energy

$$\Delta E \sim -GM_{\star}^2/R_{\star} - (-GM_{\rm NS}^2/R_{\rm NS})$$

$$\simeq GM_{\rm NS}^2/R_{\rm NS} \sim 3 \times 10^{53} \text{ erg} = 300 \text{ foe}$$

Q: Where does the rest go?

 \Rightarrow SN calculations must be good to $\sim 1\%$

 3 to see the minor optical fireworks