Astro 404
Lecture 31
Nov. 8, 2019

Announcements:
e Problem Set 9 due today

typo corrected in L24 notes: ng = (2rmkT/h?)3/?
e Problem Set 10 due next Friday Oct 15

Last time: down with solar-mass stars! onward to massive stars!
Q. what for us are high-mass stars?



Massive Star Demographics

in our context, massive: M < 8 — 10M,
that is: destined to become core-collapse supernovae

PS10: study initial mass function
distribution of star birth masses
e Mmassive stars are ~ 0.5% by number of all stars born
e but comprise ~ 10% of mass going into stars
Q. how can these both be true?

lesson: massive stars are rare but spectacular
celebrities of the cosmos
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Massive Stars: Radiation Pressure

radiation force on electron with cross section o (PS1):

Froqg =P — (1)
— Op —
rad radve Arr2c

inverse square law! same as gravity but repulsive!

radiation force balances gravity on e + p pair when
4G Mmypc

o)

(2)

L = Lggq =

Eddington luminosity

Q: what if L > LEdd 7



Massive Stars and the Eddington Luminosity

Eddington luminosity: Fyaq = Fgrav when
4G Mmyc

o
if L > Lgqq: radiation pressure stronger than gravity!
star pushes its own atmosphere away
— Eddington gives maximum stable luminosity

(3)

L = Lgqq =

PS7: massive stars have L very near Lgqqg!

e near the edge of stability!

e drive strong winds even during main sequence

e mass loss important (and uncertain) over entire star life

&)

Q). consequences of strong mass loss?



The Highest(?) Masses: Wolf-Rayet Stars

for the very highest masses: M 2 30Mq7?

and with solar composition
mass loss very strong even in main sequence
reduces star mass — converge to 30Mc 7
hydrogen envelope can be completely removed
and helium core exposed (and sometimes deeper)
wind material shows nucleosynthesis products
e.g., CNO cycle abundance pattern: nitrogen rich

observed at Wolf-Rayet stars
www: Wolf-Rayet wind

@ eta Carinae: initially 120M&? now ~ 100M

www: eta Carinae



iIClicker Poll: Massive Stars on the HR Diagram

evolution drives L — Lgqq x M

Implications for a given mass on HR diagram??

A HR evolution nearly horizontal

B HR evolution nearly vertical

C| HR evolution keeps L/Tq fixed




Massive Stars on the HR Diagram
evolution drives L — Lggq o< M

also recall: main sequence is sequence in Mmass
SO on main sequence, for all stars: L grows with mass

and for massive stars:
L — Lggq fixed by mass (roughly) on MS and beyond

SO post-main-sequence evolution changes 1.¢ but not L
— motion on HR diagram is horizontal



Massive Stars: Burning Phases

Main sequence: hydrogen burning
e convective core — fuel circulation i 15
e T. = 2x hotter than Sun .
e burn p—*He via CNO cycle

avoid Weak pp—der. goes much faster

when core hydrogen exhausted:

core contracts, smoothly begins burning helium
non-degenerate, no helium flash -
with hydrogen burning in shell @/
star becomes a supergiant

wwWww: Betelgeuse imaged

unburnt H
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Luminosity L

Massive Stars on the HR Diagram: Supergiants

red supergiant

-~ Temperature T
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When core He exhausted, begin cycles:
e contract

e ignite new shell burning

e ignite ash — fuel in core

e burn core to exhaustion

repeat...

develop “onion skin” structure: www: pre-SN
favors “a-elements” : tightly bound

C burning: 12Cc4+12Cc — 20Ne+4«
Ne burning: “°Ne4+~ — %04«
20Ne+a — 2*Mg+~

24Mg+a  — 28Sji4~

O burning: 104+ 10 — 28Si4 o

N 325""7




Neutrino Cooling

At T 25 x 108 K (C burn):
neutrinos produced via ete — v
much slower than ete~— ~~ vet still crucial

Q. why?
neutrino production rate per volume:

g = (owvn2) ~ T2 x (T3)%~ T8 (4)

v escape — dominate E loss: neutrino cooling

neutrino E loss rate per vol: e, = E,q ~ T°

equilibrium: eemit,, = Ereleased,nuc
v — L, ~ (1—10°)Ly for C thru Si burning: neutrino star!
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IClicker Poll: Effect of Neutrino Losses

when neutrino emission dominates total luminosity:

What is effect on burning phases?

A

neutrino star burning phases last a longer time
than if no neutrinos emitted

neutrino star burning phases last a shorter time
than if no neutrinos emitted

neutrino star burning phases last the same time
than if no neutrinos emitted
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Si Burning

neutrino emission removes energy from core
“steals” nuclear energy now unavailable to heat star
shortens burning phases—final stages: months, days

T ~ 4 x 102 K — photon energy density e, ~ T% large
photodisintegration 28Si 4+ ~v—p, n, «

1. s take p,n,a from weakly bound nuclei

2. these recombine with all nuclei

3. flow — more tightly bound

Net effect: redistribute to most tightly bound nuclei
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Binding Energy Patterns

recall: binding energy B; is
energy required to tear nucleus to protons and neutrons

note that larger nuclei have large B;,
but shared among more nucleons

consider: binding energy per nucleon B/A
Q. what does this represent physically?
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Nuclear Stability:

For stable nuclei:

e sharp rise in B;/A; at low A
e local max at “He

no stable nuclei at A =5,8
lowest B/A for D, LiBeB
max B/A for middle masses:
peak at °°Fe

Binding Energy

10

B/A [MeV /nucleon]

Binding Energy per Nucleon: Stable Nuclei
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Nuclear Equilibrium

nuclear reactions drive core to equilibrium
dominated by most stable nuclei possible
— most tightly bound

max abundance — largest nuclear binding:

core dominated by iron and nickel

An now the end is imminent. Q: why?

“iron peak”
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Iron Core Evolution
can't burn Fe — degenerate core

support: e degeneracy pressure—core is iron white dwarf!
first time a massive star core is degenerate

stable briefly, but...

do burn Si in overlying shell
— increase Fe core mass
when Mcore > Mchandra — COre unstable

begins to collapse
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Core Collapse

upon collapse: iron core disintegrated by photons
e.g., °°Fe—13a + 4n

huge density: electrons have high Fermi energy
— favorable to get rid of them!

electrons capture onto protons e~ 4+ p—n + ve
and onto nuclei e” +2Z—2Z — 14 4+ ve
“neutronization” or “deleptonization”

removes e and so reduces degeneracy pressure!
e accelerates collapse (positive feedback)
e also: releases v,
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Collapse Dynamics

Freefall timescale for material with density p (PS4):

1 g/cm3
9/ < 1 sec

1
Ter—N446S
pcgs

VGp

but pre-supernova star very non-uniform density
Q. what does this mean for collapse?

inner core: homologous collapse v & r
outer core: quickly becomes supersonic v > cs
outer envelope: unaware of collapse

Q: what (if anything) stops collapse?
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Bounce and Explosion

core collapses until pcore > pnuc ~ 3 x 101* g/cm?
repulsive sort-range nuclear force dominates: “incompressible”
details depend on equation of state of nuke matter

core bounce — proto neutron star born

shock wave launched

a miracle occurs

outer layers accelerated

Demo: AstroBlaster™
5. successful explosion observed
— vgj ~ 15,000 km/s ~ ¢/20!

W=
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Why step 37 What's the miracle?
“prompt shock” fails:

do launch shock, but

e overlying layers infalling

— ram pressure P = pv2,

e dissociate Fe — lose energy

shock motion stalls — *“accretion shock”
“prompt explosion” mechanism fails

Q. what needed to revive explosion?



Delayed EXxplosion Mechanisms

“delayed explosion” to revive:
neutrinos, 3-D hydro/instability, rotation effects?
some models not work, but controversial

Energetics:
Egjecta ~ Mejv? ~ (10M)(c/20)? ~ 10°! erg = 1 foe
but must release gravitational binding energy

AE ~ —GM?2/R, — (—GMgs/Rns)
~ GMgs/Rns ~ 3 x 10°3 erg = 300 foe
Q. Where does the rest go?

= SN calculations must be good to ~ 1%
s to see the minor optical fireworks



