Astro 404 Lecture 36 Nov. 20, 2019

- Problem Set 11 due date extended to Wed Nov 27 but do yourself a favor and turn it in this Friday!
- No class meeting Friday Nov 22

Upgrade continues: guest lecturer Prof. Leslie Looney

Last time: neutron stars *Q*: what are they? how do we get them?

Q: why were they feared to be undetectable?

pulsars

 \vdash

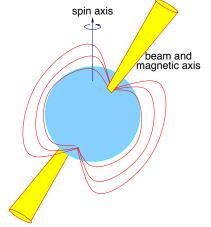
Q: what are they? how were they discovered?

if pulsar are spinning stars:

simplest interpretation: pulse period = spin period P

this means pulsar emission is *not isotropic* not the same in all directions

Lighthouse Model of Pulsars


- radio emission is beamed!
- beam axis is not aligned with rotation axis
- we see pulses when (and if!) beam sweeps over us

equatorial rotation speeds up to 1000 km/sec! stability: $v_{esc} < v_{rot}$:

$$\rho_{\rm avg} > \frac{3\pi}{GP^2} \sim 10^{14} \, {\rm g/cm^3}$$
 (1)

 $_{\scriptscriptstyle N}$ huge density! near that of nuclei!

Q: and so what does this mean? how to test?

Neutron Stars and Pulsars

Bell and Hewish suggest *pulsars are spinning neutron stars*

How can we test this?

the most direct method:

look for pulsars in remnants of core-collapse supernovae!

- found! brightest and best studied: Crab pulsar found at heart of SN 1054 (Crab Nebula) period P = 0.033 sec! → spin frequency f = 30 Hz! www: Crab pulsar in X-rays--images and movies
- X-ray point source also seen in Cas A remnant www: Cas A

Antony Hewish shares 1974 Nobel Prize for Physics. Jocelyn Bell doesn't. The Nobel Prize has issues.

ω

some pulsars not found in SN remnants, and have high speeds *Q: what could explain this?*

Neutron Star Kicks

We observe pulsars (and thus neutrons stars) to have a wide range of velocities up to many 100 km/sec; some nearly 1000 km/sec! \rightarrow the fastest ones will escape our Galaxy!

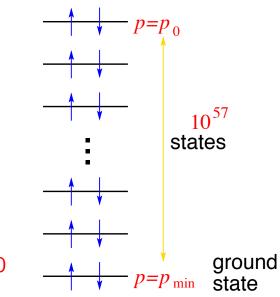
still a research topic why, but:

if supernova explosions perfectly spherical then they should produce a neutron star at rest in the remnant

but if the explosion is even a little *asymmetric* if the collapse more violent in one hemisphere then neutron star can recoil against collapse and be "kicked" out of remnant!

4

www: runaway neutron stars observed


Neutron Stars: Theory

consider *degenerate star made of neutrons* closely related to white dwarfs: degenerate electron star

recall how degeneracy works: Pauli: no two identical Fermions in same quantum state Heisenberg: $\Delta x \ \Delta p \geq \hbar/2$, so confinement to small region Δx means high momentum Δp and energy

Taken together: a star made of identical Fermions confined to stellar radius Rforms quantum states, max 2 per level: $\uparrow\downarrow$

- the more particles added...
- the higher the last filled level the Fermi level, with Fermi momentum p_0

White Dwarfs vs Neutron Stars

white dwarfs:

mass density provided by protons degeneracy pressure provided by electrons

- relativistic quantum scale: Compton wavelength h/m_ec
- leads to minimum size of Chandra white dwarf
- \bullet and to escape speed large but $v_{\rm esc} \ll c$

neutron stars:

neutrons provide both mass density and degeneracy

- relativistic quantum scale h/m_nc much smaller! by a factor $m_n/m_e \simeq 2000!$
- neutron stars much more compact
- escape speed $v \sim c/3!$

 $_{\odot}$ neutron stars are densest known objects other than black holes!

Q: should NSs hava a maximum mass?

Neutron Stars: Maximum Mass

recall why white dwarfs have maximum mass

as add mass to degenerate star:

• number of particles increases

 $\overline{}$

- have to add to ever higher Fermi level
- so average particle momentum and energy goes up
- and star radius goes down due to huge gravity

for very massive degenerate stars size becomes so small that essentially all particles relativisitic and $P = K \rho^{4/3}$: unstable!

all of these effects are true for *both* neutron stars and white dwarfs: neutron stars do have maximum mass! more than white dwarfs because all NS particles add degeneracy and extra compression includes new gravity effects estimated max mass $M_{\rm NS} < 3M_{\odot}$

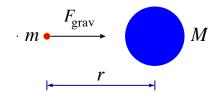
Beyond Newtonian Gravity

```
neutron stars extremely dense \rightarrow strong gravity escape speed v_{\rm esc} \sim 1/3~c!
```

```
Newtonian dynamics, gravity: ok if v \ll c
```

but this won't do for neutrons stars! can't get structure right without going beyond Newton

This is a job for Einstein!


```
...though neutron stars unknown when we did this work!
```

 \odot

Gravitation Revisited

Newton gravity force law

$$F_{\text{grav}} = \frac{GMm}{r^2}$$

implies that if M moves and thus r changes:

→ gravity force changes instantaneously over all space!
 "signal" of motion instantaneously transmitted
 throughout the universe

Einstein sez: *this is totally illegal! an unmitigated disaster!* no signal–including gravity–can move faster than *c*!

Einstein 1905: Special Relativity

- \bullet rewrote dynamics to include motions with speeds near c
- Maxwell's Equations already have signal speed = cno need to revise E&M! automatically relativistic!
- but did not include gravity

9

The Democracy of Gravity

How to go about revising gravity? Where to start?

Recall Galileo atop the Tower of Pisa:

gravity → all objects move (accelerate) the same way in free fall regardless of object mass, shape, composition not new result, but different explanations...

Newton sez:

it just so happens that gravitational mass the way objects "feel" or "couple to" gravity $F_{\text{grav}} = m_{\text{grav}}g$ is always exactly the same as inertial mass the way objects resist acceleration $a = F/m_{\text{inert}}$

⁶ Einstein sez:

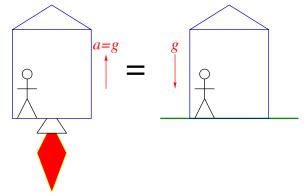
too amazing to be a coincidence, must be deeper...

Gravity and Acceleration are One

Einstein 1905-1915: struggled to reconcile *special relativity* and *gravity*

Key step:

Einstein's Equivalence Principle:


in a closed room

no experiment can distinguish gravity-free acceleration vs gravity and no acceleration

Q: explain apple weight–Earth's surface

vs rocket accelerating a = g?

Q: explain apple drop–Earth's surface vs rocket with a = g?

11

Newton's Apple Experiment: Two Views

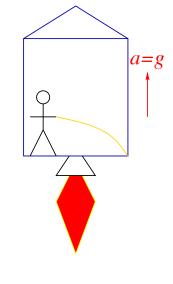
Isaac Newton on Earth's surface:

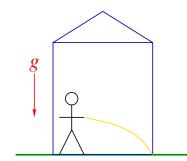
- holds an apple in his hand, **pushes up with force** F = mg says: must oppose weight so net force zero
- releases apple, observes downward acceleration says: motion due to net gravity force

Albert Einstein in rocket with constant acceleration a = g:

- holds apple in hand, pushes up with force F = mg says: to keep apple in my non-inertial accelerating hand must push so it accelerates too
- releases apple, observes downward acceleration says: motion due to my non-inertial frame

Note: identical physical results, radically different explanations


 $\stackrel{i}{\sim}$ Q: what about horizontal ball toss? Q: what about horizontal light beam?


Gravity Bends Light

Rocket Experiment: www: illuminating animation in accelerating rocket, shoot a horizontal beam

- ★ light ray deflected

But by equivalence principle: must find same result due to gravity, so: * gravity bends light rays gravitational lensing

13

iClicker Poll: Rocket Lasers

Install lasers and detectors in rocket basement and attic measure λ_{obs} during acceleration Resulting effect on photons?

- A no effect: λ unchanged if emitter and detector both accelerate with rocket
- B attic detectors see *blueshift* basement detectors see *redshift*
- С

E

- attic detectors see *redshift* basement detectors see *blueshift*
- D both detectors see *redshift*
- 14
- both detectors see *blueshift*

Gravitational Redshifting

Rocket experiment:

- light bending
- as photon travels, acceleration changes detector v relative to emitter upgoing (downgoing) photon seen to redshift (blueshift)

But by equivalence principle:

must find *same result due to gravity*, so:

★ gravity bends light rays

gravitational lensing

 * observers in basement see blueshift of attic photons! and observers in attic see redshift of basement photons!
 gravitational redshift/blueshift

15

Note: gravitational red/blueshift confirmed in lab!

Q: how would you do the experiment? what are you looking for? www: Pound-Rebka expt And there's more:

redshift = decrease in light frequency f

but f = 1/P, light wave oscillation period

so redshift $\rightarrow P$ increases but light oscillations are like clock ticking

Q: and so?

Gravitational Time Dilation

★ clocks in basement appear to run slow when viewed from attic! and attic clocks appear fast when viewed from basement!

viewed from attic, basement clocks appear slower by

$$\Delta t = t_{\text{basement}} - t_{\text{attic}} = \frac{gh}{c^2} = \frac{\phi}{c^2}$$
(2)

where $\phi = gh$ is gravitational potential

time "warping" due to gravity:
"gravitational time dilation"

★ gravity influences "flow" of time!

deeper potential \rightarrow slower apparent "time flow" Q: so which clock is really right? Who's right-attic or basement observers?

***** *both* are reporting accurately

both see their own clocks tick normally

experiment: Alicia and Beyoncé start at same place

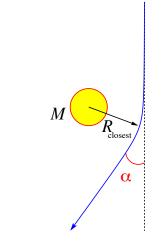
- Alicia remains still
- Beyoncé goes deeper in potential, hangs out, then returns

They meet again at starting point and compare clocks: *Q: how do the tick rates compare? Q: how do the elapsed times compare?*

18

when they meet again:

- *both* clocks tick at same rate
- but total elapsed time is larger for Alicia!


Q: how to test these effects in real world?

Light Bending: The Sun

In principle: all gravitating objects bend light including you, me, the earth...In practice: need strong gravity source to create effect large enough to observe

Einstein (1915) devised first test: the Sun

- Sun's gravity deflects starlight rays
- the stronger the gravity along the path the bigger the deflection bending angle $\alpha = 4GM_{\odot}/R_{\rm closest}c^2$

biggest effect for starlight "grazing" Sun edge: $R_{\text{closest}} = R_{\odot}$

 $\stackrel{\aleph}{\sim}$ Q: why is this technically challenging to see? Q: how to get around the problem?

1919 Eclipse: Give it up for Big Al!

star

observer

Problem: Sun's glare obscures surrounding starlight Solution: block glare with eclipse!

21

• all starlight bending experiments confirm Einstein!