Astro 404 Lecture 40 Dec. 11, 2019

- Good news: no more problem sets!
- Bad news: Final Exam Next Friday, Dec 13, 7:00-10:00pm info on Compass
- graded Hour Exams available

 \vdash

Finale this week: binary stars and stellar explosions

most dramatic effect of binaries: mass transfer *Q: how can this occur?*

Type Ia Supernovae Observed

- SN Type $I \rightarrow no hydrogen$ in spectrum
- Type Ia: He, Si lines are seen
- peak luminosity: $\sim 1^{mag} = \text{factor } 2.5 \text{ brighter than SN II}$ \rightarrow easier to find, probe larger distances (higher z)
- ejecta faster than Type II events
- blast energies ~ 1 foe = 10^{51} erg
- host galaxies: all types, including "red and dead" elliptical
- observed Type Ia rate $\sim 20\% 50\%$ of Type II but beware selection effects: easier to see Type Ia

Q: what physical ingredients needed to produce SN Ia?

Type Ia Supernovae: Ingredients

- no hydrogen → "stripped" star need either wind or companion
- found in all galaxies
 - \rightarrow not correlated with active in star formation \rightarrow progenitors can be long-lived: low/intermediate mass stars
- faster ejecta, brighter events \rightarrow progenitors less massive
- \bullet regularity of light curves \rightarrow fairly uniform path to formation
- ▶ putting it all together... *Q: what do you think?*

Type Ia Supernovae: White Dwarf Explosions

all viable scenarios invoke:

- ★ binary system
- \star a *white dwarf*, usually a CO dwarf

What's a CO white dwarf?

 \rightarrow end-product of intermediate-mass star

recall – after main sequence:

- 1. H shell burn \rightarrow red giant
- 2. He ignition: degenerate \rightarrow explosive: *helium flash*
- 3. core expands, burns He \rightarrow C+O
- \circ 4. CO white dwarf forms

(for $1 - 4M_{\odot}$; see Director's Cut)

SN Ia: Thermonuclear Explosions

companion donates mass to white dwarf

- WD becomes denser, more relativistic
- when $M_{WD} > M_{Chandra}$: unstable! collapse begins ignites degenerate C burning ("carbon flash")

runaway nucleosynthesis \rightarrow WD detonates heated \rightarrow achieve *nuclear statistical equilibrium* Q: which will make what?

energy release:

- nuclear burning ${}^{12}C \rightarrow {}^{56}Fe$ gives $Q = B_{56}/56 - B_{12}/12 = 0.86$ MeV per nucleon if inner 50% of M_{Chandra} is carbon, then release $E_{\text{nuke}} \sim QM_{\text{core}}/m_u \sim 1.6 \times 10^{51}$ erg = 1.6 foe
- compare to core gravitational binding: for uniform sphere $E_{grav} = 3/5 GM_{core}^2/R \sim 10^{50}$ erg = 0.1 foe Q: and so?

Type Ia Explosion Physics

thermonuclear energy powers explosion

not gravitational energy!

www: Type Ia simulation movie, Chicago group

white dwarf entirely unbound, disrupted, ejected

- Type Ia should leave *no compact remnant*
- all nucleosynthesis products ejected

Neutrinos?

• expect some relatively low-energy \sim 3 MeV emission from β decays, but a "fizzle" compared to core-collapse

 $\overline{}$

Type Ia Supernova Nucleosynthesis

in thermonuclear explosion: all nucleosynthesis is from explosive burning (in contrast to core-collapse case) most of star "cooked" to $T \sim 1$ MeV driven to nuclear statistical equilibrium

• favors most tightly-bound elements: *iron peak*

00

- yields peak at $m_{\rm Ia,ej}({}^{56}{\rm Fe}) \sim 0.5 M_{\odot}$ ~ 5 – 10 times more than typical core-collapse Fe yields also large amounts of Cr–Ni
- but traces of Mg Si, S, Ca observed: not all star in NSE requires some burning occur at lower T: "deflagration-detonation" transition

Type Ia Supernovae: Whodunit?

general agreement: SN Ia require white dwarf & companion good news: binary systems common bad news: *still* no consensus, and no direct evidence, on nature of binary companion

single degenerate

binary companion is a star in giant phase mass transfer to white dwarf companion survives explosion

double degenerate

(0)

binary companion is another white dwarf merge after inspiral due to gravitational radiation

iClicker Poll: Progenitors of Type Ia Supernovae

All answers count! Your chance to prognosticate!

Which best describes the origin of Type Ia supernovae?

- A single degenerate (giant companion) > 80% of SNIa
- B single degenerate 50 to 80% of SNIa
- С
 - double degenerate (merging white dwarfs) 50 to 80% of SNIa

-

double degenerate > 80% of SNIa

10

none of the above

Problems with either!

Single-Degenerate:

- explosion should evaporate some of companion atmosphere why no H seen in supernova spectrum?
- No success (yet?) in direct searches for runaway companions in Type Ia SN remnants

 \rightarrow limits imply companion must be dim \rightarrow low mass but then must be very close binary to transfer mass so why no H in spectrum?

Double-Degenerate:

11

- WD-WD inspiral times long unless very close binary no WD binaries seen with $\tau_{inspiral} < t_0$...but could this be a selection effect?
- WD-WD merger could lead to neutron star formation "accretion induced collapse," inward burning

Supernovae and Abundance Signatures

Core collapse supernovae: massive star explosions

- observed as Type II, Ib, Ic events
- ejecta dominated by α-elements
 ¹⁶O, ¹²C, ²⁰Ne, ²⁴Mg, ²⁸Si, ²²S
- less but still significant Fe group (Ca, Fe, Ni)

Thermonuclear supernovae: exploding white dwarfs

- observed as Type Ia events
- ejecta dominated by Fe group: Ca, Fe, Ni

Q: so what is the role of stars in making the periodic table?

Stellar Nucleosynthesis: Updated Scorecard

a good thing to take away from ASTR404 - hint!

element origins: the story thus far:

- intermediate-mass stars: 0.9M_☉ ≤ M ≤ 8M_☉ sources of carbon (C) ejected in planetary nebulae
- high mass stars: $M \gtrsim 8M_{\odot}$ sources of α -elements O, Si, Mg, S ejected in core-collapse supernova explosions
- exploding white dwarfs: sources of iron-peak elements Ca, Fe, Ni ejected in thermonuclear supernova explosions

www: periodic table and stellar origins

1

Gamma-Ray Bursts

Gamma-Ray Bursts: Discovery

historical context: in late 1960's: *Cold War*Nuclear Test Ban treaty—no explosions in atmosphere or space
US military: *Vela* satellites to monitor for air blast γ-rays
discovered signals at a huge rate: 10–20/year!
huge worry but quickly realized events are
extraterrestrial and indeed extrasolar

1973: Los Alamos *Vela* Group finally went public "Observations of Gamma-Ray Bursts of Cosmic Origin" Klebesadel, Strong, & Olsen 1973 ApJL 182, L85

hundreds (!) of different theories proposed over the decades ${}_{\!\!\!\!{\rm ff}}$

Gamma-Ray Bursts in the Compton Era

major advance: Compton Gamma-Ray Observatory 1991-2000 Burst And Transient Source Experiment (BATSE) monitored all sky for \approx 9 years, found:

- event rate: 2704 BATSE bursts seen $\rightarrow \sim 300$ events/yr $\rightarrow 1$ GRB/day!
- no repeat events from same direction
- duration (time above background): ~ 0.1 sec to $\sim 10^2$ sec
- time history (*lightcurves*): highly nonuniform some highly variable: 100% modulation on < 0.1 sec timescales! but others fairly smoothly varying
 www: BATSE lightcurve sampler
- energy spectra: typically $\epsilon_{peak} \sim few \times 100 \text{ keV}$
- sky locations only known to within $\sim 1^\circ$
 - \rightarrow too big a region to quickly search with telescopes
 - \rightarrow no counterparts seen at any other wavelengths!

16

What are they?!?

GRB Distance Scale and Sources

most models have either GRBs very local or very distant

Galactic models:

 \sim all observed bursts within our Galaxy

energetics requirements modest \rightarrow neutron stars?

event rates high: many sources needed to give \sim daily, non-repeating event rate bursts a very common, frequent occurrence in a galaxy

 $_{r_1}$ this was the favored model pre-BATSE

GRB Distance Scale and Sources

Galactic models: (favored pre-BATSE) ~ all observed bursts within our Galaxy energetics requirements modest → neutron stars? event rates high: many sources needed bursts a very common, frequent occurrence in a galaxy compare: novae (accreting white dwarfs) ~ 50 events/yr Galactic population, similar rate

Cosmological models:

bursts come from other galaxies, typically very distant: substantial fraction of max distance $\sim d_H$ energetics requirements enormous! \gg SN baryonic energies $\approx event rates$ low: only 1 GRB/day/observable Universe bursts a very rare occurrence in a galaxy rate per galaxy $\sim 3 \times 10^{-5}$ GRB/century compare: core-collapse supernova rate $\sim few$ /century

Q: what information (from BATSE alone) would discriminate the Galactic vs cosmo pictures?

Implications of Variability

GRBs can be highly variable, with $\delta F/F \sim 1$ on the smallest observable timescales, $\delta t \sim 1$ msec

but if entire signal varies, has to reflect coordinated behavior of entire source i.e., source luminosity has $L = F_{surface}A_{emit}$ and so $\delta L/L \sim \delta A_{emit}/A_{emit} \sim 2\delta R_{emit}/R_{emit}$

in time δt , max change in emitting region R_{emit} is $\delta R \leq \delta R_{\text{max}} = c \ \delta t$ and so given observed variability, can put *upper limit* on source size: $\delta R_{\text{max}}/R \geq \delta R/R \leq 1/2 \ \delta L/L \sim 1/2$

 $R_{\text{emit}} \lesssim 2R_{\text{max}} = \frac{c \ \delta t}{2} \simeq 6 \times 10^7 \ \text{cm} = 600 \ \text{km} \ll R_{\oplus}, R_{\odot}$

emitting region must be *tiny*!

19

compact source required – neutron star?! black hole?!

Implications of Sky Distribution

GRB positions not well-determined by gamma-ray data (BATSE) localized to $\sim 1^{\circ}$

But for > 4700 bursts, *sky distribution* of events carries important information

Q: expected distribution in Galactic model (very nearby, all-Galaxy)?

Q: expected distribution in cosmological model?

iClicker Poll: GRB Sky Distribution

All answers count! Your chance to prognosticate!

Which will best describe the GRB sky distribution?

- A most events trace Galactic plane \rightarrow arise in Milky Way
- **B** most events come from all directions \rightarrow isotropic \rightarrow cosmological
- С
- will see two components: plane and isotropic
- ŊDnone of the above

Observed GRB Sky Distribution

www: BATSE sky distribution

isotropic to very high precision no correlation with Galactic plane

much more simply explained in cosmological model thanks to Cosmological Principle

in Galactic model: very difficult to avoid anisotropy

- ullet either sources very close: $d\ll$ disk scale height ~100 pc
- or sources in Galactic "halo" spherical configuration, much larger than $R_\odot\sim 10~{
 m kpc}$
 - ... but must avoid signal from M31...

22

Fate of a CO Core

4(a). if $M \lesssim 4M_{\odot}$, CO core supported by e^- degeneracy pressure never contracts, remains as CO white dwarf

4(b). if $M \sim 4 - 8M_{\odot}$, shell He burning increases CO core mass until $M_{\text{core}} > M_{\text{Chandra}}$: core contracts, burn to O, Ne, Mg results in ONeMg white dwarf

thus: CO white dwarfs are outcomes of $\sim 1 - 4M_{\odot}$ evolution but lower-mass stars are the most abundant \rightarrow CO white dwarfs are the most common type

 $_{\mathbb{N}}$ Q: so what if WD has binary companion which transfers mass?

SN Ia Population Studies: Everybody Does It?

SN Ia population constraints: (Maoz 2008) observed SNIa rate $\approx 15\%$ all $3 - 8M_{\odot}$ star death rate

but SNIa candidates

- must (?) be in binaries ... and can't double-count: \leq 1 SN Ia per binary! and so \leq 0.5 SN Ia/star,
- and must have total mass $m_{tot} > M_{Chandra}$,
- and must have short periods = close orbits

Relevant comparison:

SNIa ~ 100% $3 - 8M_{\odot}$ close binaries > $M_{Chandra}$!

History of Nucleosynthesis

Composition of an astrophysical object gives clue to supernova contributors \rightarrow past evolution

abundances encode nucleosynthesis history

compare the two supernova classes:

- core-collapse (Type II, Ib, Ic)
- thermonuclear (Type Ia)

Q: which occurs first in the universe? testable consequences?

Evolution of Supernova Nucleosynthesis

Evolution timescales very different:

- SN II: massive stars, short lived
- SN Ia: need WD \rightarrow intermediate mass \rightarrow longer lived
- \Rightarrow time ordering: first SN II, then later SN Ia

Solar system: mix of both www: Solar Abundances oldest stars (globular clusters and "halo stars"):

 \rightarrow SN II only and so expect SN II patterns in heavy elements (high O/Fe) Observed!

also expect $(O/Si)_{\odot} \simeq (O/Si)_{II}$

 \aleph and so (O/Si)_{halo} ≃ (O/Si)_☉ Observed!