April 3, 2019

PR	INT	Na	me
1 17	A P LL	1461	HILL

Last (family) name

First name

L1 ONL S1 S2 S3 S4 S5

Circle Section:

Signature

Instructions- This is a closed book, closed notes exam. You have 1.5 hours to complete it.

- At the end of this exam, you must return this exam with all pages, and you must return your scantron sheet. Please circle all of your answers on this exam and fill in all of your answers on the scantron.
- If you do not turn in a complete exam and scantron form, you will receive the grade AB (Absent) for this exam.
- Use a #2 pencil. Each question has only one answer. If you bubble in more than one answer it will automatically be marked wrong. Erase mistakes completely.
- This exam is either Form A, B, C. You don't know which test form you have so you MUST turn in your scantron with the exam so the TAs can correctly mark the test form box on your scantron sheet after the exam.

READ → How to fill out the Scantron form

- Print and bubble in your LAST NAME with NO SPACES or DASHES starting in the left most column. Print your FIRST INITIAL in the right-most column.
- Print and bubble in your Student ID number (UIN) **NO SPACES or DASHES** in the Student Number box.
- Print and bubble in the date in the Date box.
- Print and bubble in your NET ID with NO SPACES or DASHES in the NETWORK ID box.
- Print and bubble in the Section Box. See section codes. >
- Write Stat 200 on the COURSE line.
- Write your instructor's name on the INSTRUCTOR line.
- Write your section on the SECTION line.

Section Codes:

L1 (Fireman TR at 9:30) = 00001

ONL (Fireman) = 00002

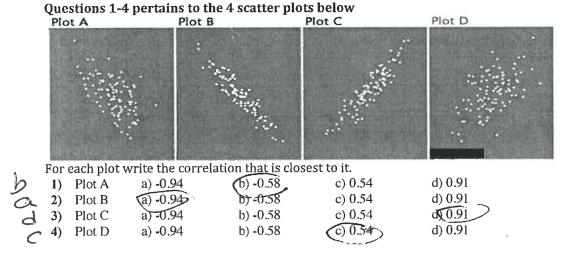
S1 (Liu MWF at 9am) = 00003

S2 (Wang MWF at 11am)= 00004

S3 (Yubai at 1pm)= 00005

S4 (Yang TR at 9:30) = 00006

S5 (Chen TR at 1:30) = 00007


Sign your name, and right underneath the student signature line PRINT your name

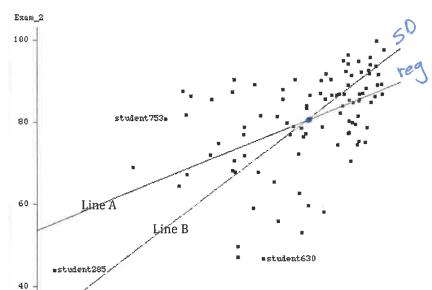
Warning -All Cheating including being caught with a non-permissible calculator or formula sheet will result in a 0 and an academic integrity violation on your University record.

CHECK NOW THAT YOU HAVE COMPLETED ALL OF THE STEPS. Before starting the exam, check to make sure that your test booklet is complete. You should have 9 pages (63 problems), including 2 tables: the normal table, and the chi-square table.

Formulas:
$$SD_{errors} = \sqrt{1 - r^2} * SD_y$$

Formulas:
$$SD_{errors} = \sqrt{1 - r^2} * SD_y$$
 $SE_{slope} = \frac{SD_{errors}}{\sqrt{n} * SD_x} = \frac{\sqrt{1 - r^2}}{\sqrt{n}} * \frac{SD_y}{SD_x}$

Questions 5-8


X and Y are two lists of numbers with correlation r = 0.3. If all the Y values are multiplied by negative 2, the new correlation coefficient would be c) -0.3 e) Not enough information given a) 0.6 b) -0.6 d) 0.3

6) The regression line is the same as the SD line when

Choose one:

- The correlation is 0
- (b), The correlation is perfect (1 or -1)
- The average and SD of both variables are the same
- The regression line is a horizontal line through the average of Y when... Choose one:
 - The correlation is 0
 - The correlation is 1 b)
 - The average and SD of both variables are the same c)
- Outliers (extreme data points) can strongly influence the correlation coefficient. Which one of the statements below is true? 8)
 - a) Removing outliers always causes the correlation to go down in absolute value.
- b) Removing outliers always causes the correlation to go up in absolute value.
- Removing outliers could cause the correlation to go up or down in absolute value depending on the scatter plot.

Questions 9-16 pertain to the exam 1 and exam 2 scores of 100 students in this class. (The ones who did less than about 50% of the bonus assignments.) The 5 summary statistics and the scatter plot are shown below:

计算数据数	Average	SD
Exam 1	86	12
Exam 2	80	12

April 3, 2019

Correlation: r = 0.5

9)	Two lines are show	on. One is the regression line and one is the SD line. Which is the <i>regression</i> line?
	(a) Line A	b) Line B

- te f 10) One student scored exactly average on both exams, which line does his data point lie on? a) Regression Line only b) SD line only c) Both d) Neither
- 11) Which student did better on Exam 2 than predicted by the regression line?

Exam_1: BONUS_TOTAL_AVERAGE < 50.21

a) Student 630 only

40

a

0

0

d

- **b)** Student 753 only
- c) Student 285 only
- d) Both Student 285 and Student 753
- 12) If a student scored exactly 1 SD below average on Exam 1, what is the regression estimate for his Exam 2 score?
 - (a) 0.5 SD's below average on Exam 2 1 SD below average on Exam 2 b)
 - c) Exactly Average on Exam 2
- Z6, x r

100

- One student scored a 98 on Exam 1, what is the regression estimate for his Exam 2 score? b) 92 c) 83 (d) 8g
- 14) What is the slope of the regression line for predicting Exam 2 scores from Exam 1 scores?
 - a) 0.5*86/80
- b) 0.5*80/86
- d) 0.5*12/86
- e) 0.5*12/80

- a) 0

16) The SD of the prediction errors (also known as the RMSE) when predicting Exam 2 scores from Exam 1 scores is

- a) 12
- b) 6
- c) $\sqrt{1-0.5^2 * 86}$
- d) $\sqrt{1-0.5^2 * 80}$

Exam 2 = 0.5(Exam 1) + 37= 0.5(98) + 37 = 86

Ouestions 17-25 How do the number of hours students in a large Chemistry class studied for their Final correlate with their Final exam scores? To find out we randomly sampled 64 of the 3000 students enrolled in the class and got the 5 summary stats in the table below. (Assume the scatter plot follows a liner trend.)

	Avg	SD	
Final Score	60	18	r = 0.4
# Study Hours	12	3	_

- 17) Our best estimate of the slope of the regression equation for predicting Final Scores from study hours for all 3000 students is $\beta = \underline{\qquad} \text{pts/study hour a) 0.067} \quad \text{b) 0.08} \quad \text{c) 0.4} \quad \text{d) 2}$
- c) 0.092 d) 4.58

18) SE_{ar} = ____ pts/study hr. is closest to ... (a) 0.573 (b) 0.687 19) 92% Confidence Interval for β = sample slope ± ____ * SE_{ar}

To test H_0 : β =0 against the H_A : β ≠0 , Z, t, χ^2 and F statistics were computed.

20) Z stat = (a)
$$\frac{0.4}{\sqrt{1-0.16}} * \sqrt{64}$$
 b) $\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$ c) $\frac{0.16}{1-0.16} * 62$ d) $\frac{0.16}{1-0.16} * 64$

b)
$$\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$$

c)
$$\frac{0.16}{1-0.16}$$
 * 62

d)
$$\frac{0.16}{1-0.16}$$
*64

21) t stat = a)
$$\frac{0.4}{\sqrt{1-0.16}} * \sqrt{64}$$

$$\begin{array}{c}
 0.4 \\
 \hline
 \sqrt{1 - 0.16} * \sqrt{62}
\end{array}$$

c)
$$\frac{0.16}{1-0.16}$$
 * 62

d)
$$\frac{0.16}{1-0.16}$$
*64

21)
$$t \text{ stat} = \mathbf{a}$$
) $\frac{0.4}{\sqrt{1-0.16}} * \sqrt{64}$ (b) $\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$ (c) $\frac{0.16}{1-0.16} * 62$ (d) $\frac{0.16}{1-0.16} * 64$
22) $\chi^2 \text{ stat} = \mathbf{a}$) $\frac{0.4}{\sqrt{1-0.16}} * \sqrt{64}$ (e) $\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$ (f) $\frac{0.16}{1-0.16} * 62$ (d) $\frac{0.16}{1-0.16} * 64$

b)
$$\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$$

c)
$$\frac{0.16}{1-0.16}$$
 * 62

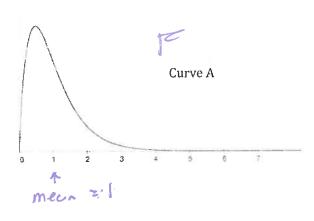
$$\frac{\mathbf{d}}{1 - 0.16} * 6^{2}$$

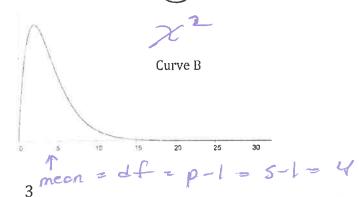
C 23) F stat = a)
$$\frac{0.4}{\sqrt{1-0.16}} * \sqrt{64}$$
 b) $\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$ c) $\frac{0.16}{1-0.16} * 62$ d) $\frac{0.16}{1-0.16} * 64$

b)
$$\frac{0.4}{\sqrt{1-0.16}} * \sqrt{62}$$

(c)
$$\frac{0.16}{1-0.16}$$
 * 62

d)
$$\frac{0.16}{1-0.16}$$
 * 64

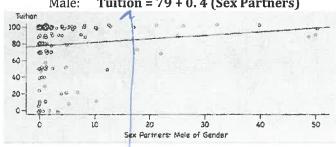

Suppose the t stat testing H_0 : $\beta=0$ against H_A : $\beta\neq 0$ yielded a p-value = 0.1%,

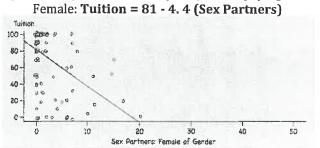

- 24) then the F stat would yield a p-value ______0.1% a) < b) > (c) = 25) and the Z stat would yield a p-value ______0.1%. (a) < b) > c) =

Q: 26) If we changed to a 1-sided H_A: $\beta > 0$, the t stat would give a p-value = (a) 0.05% b) 0.1% c) 0.2% d) 0.1% * $\sqrt{\frac{64}{62}}$

Ouestions 27 - 28

28) Here are the F and χ^2 curves. Which is which? The F curve ischoose one: (a) A





Questions 29-30

The scatter plots below show the survey responses of 100 females and 140 males in Stat 200 to these 2 questions: "How many people have you slept with in your life?" and "What percent of your tuition are your parents paying for?"

Tuition = 79 + 0.4 (Sex Partners)

29) Translate the male and female regression equations above into an equivalent multiple regression.

Code Males=0 and Females=1 for the Gender variable.

b) Tuition =
$$8\sqrt{-4.4}$$
 (Sex Partners) + 2 (Gender) + -4.8(Sex Partners*Gender)

30) If you switched the code to Females=0 and Males=1, which one of the following would change?

a) Scatter Plots pictured above b Multiple Regression Equation c) Simple Regression Equations

Question 31-32

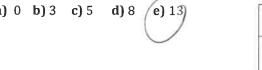
6

Suppose A and B are 2 drugs designed to prolong life in patients with terminal cancer. The numbers in the tables indicate the mean survival time (in months) from those who received A alone, B alone, neither or both. Each table describes a different hypothetical study.

31) Which model matches the data in the table?

a) Months =
$$10A + 17B$$

b) Months =
$$4 + 10A + 6B + 17AB$$


c) Months =
$$4 + 6A + 2B + 11AB$$

(d) Months =
$$4 + 6A + 2B + 5AB$$

	A=0	A=1			
B=0	4 4 4	10			
+	2				
B=1	6	17			
4	+ 6	+.	2 .	f	 =

32) Fill in the missing cell in the table to match a model with no interaction term.

a) 0 b) 3 c) 5 d) 8

	A=0	A=1
B=0	2 + 8	10
+	3	
B=1	5	13

Plot 1	Plot 2	-	.7 Plot 3			
	6 verall			ove	reli	
33) For which plot d	loes there appear to b	e an interactio	n: a) Plot 1	b) Plot 2	c) Plot 3	
34) Let's say we're	trying to figure out inded by group member of the state o	f X causes Y, for ership? a) Plo 00 students repo a much larger	which plot is t 1 b) I tred their ACT copulation of a	the causal relation the causal relation to th	phot 3 hours they study s. Here is the mult	per week, and
35) The above equa	tion describes the be	st fitting	a) line	b) plane	c) ellipsoid	d) cube
36) through all the p	points so as to minim	ize the sum of s	quared errors	in a) Stud	y Hours b) ACT	c) GPA
	B study the same nunts they would differ b	y pts in	GPA.		n their ACT score	
Look at the correlation	n matrix describing i	between the 3	variables. Fill	in the 2 missin	g blanks in the t	op row.
38) Blank (A) is a	a) 0 b) 0.17 c) 0.22	d) 0.25 (e) 1	Stud	Study		GPA 0.22
39) Blank (B) is	a) 0 b) 0.17 c) 0.22	d) 0.25 e) 1	ACT GPA			1.00
(ACT predicing 41) The multiple co. a). R is the corre	CT in the multiple reg GPA) would be rrelation coefficient i elation between the 3 elation between the s ed by converting the 3	s R= 0.31 How variables once tudents' predic	was that calc each variable ted GPA's and	d) not enou lulated? has been contro their actual GPA	gh info. Leted lled for the other 's.	two.
	β 's = 0? (Both slopes ch is which? Which			d F test stat were	both computed: c) not enough	
a) 500 b) 0.21	able. What is χ ^{2*} (crit c) 11.34 d) 13.82	2) @ 1627			w.	L 1 = 1
44) The p-value is	a) < 0.1% b) between	een 0.1% and 1	% c) > 1%	FAF	13.82	
			25.	3// 13	0150	1) < 0
45) Is the p-value u	sing the F-test larger	than, smaller t	nan or the sam	e as the p-value	using the χ² test?	М

Questions 46-51 continue the example on the previous page where we found GPA=2.3 + 0.04(Study Hours) + 0.03(ACT) to be the best fit for our sample n=238 with R=0.31.

- **46)** Suppose you decided to reject the null, you'd conclude that
 - Both slopes must be significant
 - The ACT slope must be significant b)
 - The Study Hours slope must be significant c)
 - The intercept must be significant
 - Either the ACT or the Study Hours slope or both must be significant

48) How many degrees of freedom for the t-test? a) 2 b) 3 6 235 d) 236 e) 237

47) To see which slope is significant in the multiple regression equation: $\hat{G}PA=2.3+0.04(Study\ Hours)+0.03(ACT)$ the computer ran a Z test and a t-test. Which test would yield lower p-value for the slopes?

(b)Z-test **c)** they'd be exactly the same **d)** Not enough information

- 49) The computer ran 2-sided significance tests for each slope and found they were both significant at α =0.01. Which of the following Confidence Intervals gives exactly the same information?
 - (a) 99% CI's do not include 0
 - b) 99.5% CI's do not include 0
 - c) 98% CI's do not include 0
 - d) 99% CI's do include 0
 - e) None of the above

50) Another variable is added to the model that is negatively correlated GPA. Will R2 go up or down? Circle one:

c) Stay the same d) Either down or stay the same b) Down e) not enough info Alvous aves

- 51) Let's say a 3rd variable that's correlated with GPA is added to the multiple regression model and the slopes for Study Hours and ACT stay the same. You can conclude the 3rd variable must be ...
 - a) correlated with either study hours or ACT
 - b) correlated with both study hours and ACT
 - uncorrelated with both study hours and ACT.
 - negatively correlated with study hours and positively correlated with ACT (or vice versa) so their effects cancel o

Questions 52-53

The numbers 1-15 are divided into 3 groups as shown below. SST = 280.

Group 1	Group 2	Group 3	
1	6	11	
2	7	12	
3	8	13	
4	9	14	
5	10	15	
Mean=3	Mean=8	Mean=13	Overall Mean=8

52) SSB=

a

 $(3-8)^2 + 5(8-8)^2 + 5(13-8)^2 = 250$

53) SSW=

b) 50

c)150 d) 250

55W= 55T-55B=280-250 = 30 5+(4-3)+(5-3)+ (5-8)+(7-8).+...

Questions 54-60

The table displays the survey responses of 182 Stat 200 students to the question: "How many children would you ideally like to have?". The students also identified their ethnicity. Imagine the 182 students were randomly sampled from a much larger population of all Stat 200 students.

	Ethnicity	Average (rounded)	SD (rounded)	n
# of Children	White	3.0	1.6	55
# of Children	Asian	1.95	0.9	104
# of Children	Other	2.6)	1.3	23,

Questions **54-56** ask you to fill in 3 of the missing cells in the ANOVA table is below.

- 54) How many degrees of freedom for the model? (a) 2 b) 3 c) 179 d) 180 e) 18
 - 55) The F-stat for testing the null hypothesis that all group means are the same in the population is:

 a) 6.81

 b) 10.215

 c) 13.18

 d) 0,128

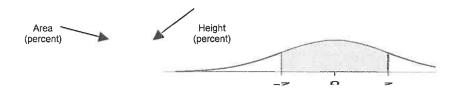
 e) not enough info
- α 56) R² is closest to a) 0.128 b) 0.21 c) 0.358 d) Not enough info α = $\frac{938}{587}$ = $\frac{40.86}{30.28}$

				7/0/3	•
Source	SS (Sum of Squares)	df	Mean Square	F Statistic	P-value
Model	SSB=40.86	df=2	MSB= 20.43	F= 20.43/1.55 13.18	< 0.005%
Error	SSW=	df= 179	MSW= 1.55	SD+errors = 1.55 =	1.245
Total	SST=318.38	df= 181		R2= 0,128	

- 57) What do you conclude?
 - a) That all the group averages are significantly different from each other.
 - (b)) That at least one of the group averages is significantly different than the others.
 - That none of the group averages are significantly different from each other.

Compute the t-statistic to test whether the difference between Other and Asian is significant.

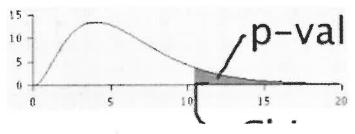
- 58) What is the $SE_{difference}^{+}$? Use $SD_{error}^{+} = 1.245$ (a) $1.245\sqrt{\frac{1}{104} + \frac{1}{23}}$ b) $1.245\sqrt{\frac{1}{1.3} + \frac{1}{0.9}}$ c) $\sqrt{1.245}\sqrt{\frac{1}{55} + \frac{1}{23}}$
- 59) What is the t-statistic? a) $\frac{0.4}{SE_{difference}^{+}}$ * b) $\frac{0.4}{SE_{difference}^{+}}$ * $\sqrt{179}$ c) $\frac{0.7}{SE_{difference}^{+}}$ * 182 d) $\frac{0.7}{SE_{difference}^{+}}$
 - 60) The p-value is 2.23%. The Bonferroni correction would ______ the p-value by ____ a) multiply, 2 (b) multiply, 3 c) multiply, 6 d) divide, 2 e) divide, 3


Questions 61-63 pertain to correctly filling out your cover sheet and Scantron form.

- 61) Cover Sheet -Did you circle your section on the cover sheet? a) Yes b) No
- 62) Scantron -Did you print and bubble in your NET ID with no spaces or dashes in the NETWORK ID box? a) Yes b) No
- (a) Scantron-Did you print and bubble in the correct section code (given on cover sheet)? (a) Yes (b) No

This is the end of the test. Carefully review all your answers and make sure you answered all the questions. Then bring both the text booklet and your Scantron to the proctors.

STATS 200 EXAM 2 April 3, 2019


STANDARD NORMAL TABLE

z	Area	z	Area	z	Area
0.00	0.00	1.50	86.64	3.00	99.730
0.05	3.99	1.55	87.89	3.05	99.771
0.10	7.97	1.60	89.04	3.10	99.806
0.15	11.92	1.65	90.11	3.15	99.837
0.20	15.85	1.70	91.09	3.20	99.863
0.25	19.74	1.75	91.99	3.25	99.885
0.30	23.58	1.80	92.81	3.30	99.903
0.35	27.37	1.85	93.57	3.35	99.919
0.40	31.08	1.90	94.26	3.40	99.933
0.45	34.73	1.95	94.88	3.45	99.944
0.50	38.29	2.00	95.45	3.50	99.953
0.55	41.77	2.05	95.96	3.55	99.961
0.60	45.15	2.10	96.43	3.60	99.968
0.65	48.43	2.15	96.84	3.65	99.974
0.70	51.61	2.20	97.22	3.70	99.978
0.75	54.67	2.25	97.56	3.75	99.982
0.80	57.63	2.30	97.86	3.80	99.986
0.85	60.47	2.35	98.12	3.85	99.988
0.90	63.19	2.40	98.36	3.90	99,990
0.95	65.79	2.45	98.57	3.95	99.992
1.00	68.27	2.50	98.76	4.00	99.9937
1.05	70.63	2.55	98.92	4.05	99.9949
1.10	72.87	2.60	99.07	4.10	99.9959
1.15	74.99	2.65	99.20	4.15	99.9967
1.20	76.99	2.70	99.31	4.20	99.9973
1.25	78.87	2.75	99.40	4.25	99.9979
1.30	80.64	2.80	99.49	4.30	99.9983
1.35	82.30	2.85	99.56	4.35	99.9986
1.40	83.85	2.90	99.63	4.40	99.9989
1.45	85.29	2.95	99.68	4.45	99.9991

STATS 200 EXAM 2 April 3, 2019

Chi-Square Table

Degrees of freedom \downarrow	30%	10%	5%	1%	0.1%	← p-value
1	1.07	2.71	3.84	6.63	10.83	
2	2.41	4.61	5.99	9.21	13.82	
3	3.66	6.25	7.81	11.34	16.27	
4	4.88	7.78	9.49	13.28	18.47	
5	6.06	9.24	11.07	15.09	20.52	
6	7.23	10.64	12.59	16.81	22.46	
7	8.38	12.02	14.07	18.48	24.32	7
8	9.52	13.36	15.51	20.09	26.12	
9	10.66	14.68	16.92	21.67	27.88	
10	11.78	15.99	18.31	23.21	29.59	
11	12.90	17.28	19.68	24.72	31.26	←Chi-square
12	14.01	18.55	21.03	26.22	32.91	1
13	15.12	19.81	22.36	27.69	34.53	
14	16.22	21.06	23.68	29.14	36.12	
15	17.32	22.31	25.00	30.58	37.70	
16	18.42	23.54	26.30	32.00	39.25	
17	19.51	24.77	27.59	33.41	40.79	
18	20.60	25.99	28.87	34.81	42.31	
19	21.69	27.20	30.14	36.19	43.82	
20	22.77	28.41	31.41	37.57	45.31	
21	23.86	29.62	32.67	38.93	46.80	
22	24.94	30.81	33.92	40.29	48.27	
23	26.02	32.01	35.17	41.64	49.73	
24	27.10	33.20	36.42	42.98	51.18	