
Astronomy 596/496 PC Spring 2010
Problem Set #2

Due in class: Friday, Feb. 19
Total points: 12+1

ASTR496PC Students: You may drop choose to drop all of any numbered problem (i.e.,
all of its sub-parts if it has them). But it is recommended that you try them all.

1. Olber’s Paradox. Prior to Hubble’s enlarging of the cosmic distance scale by discover-
ing spiral nebulae are “island universes,” it was implicitly assumed that the universe
was static, infinitely large, infinitely old, and filled with (unchangingly luminous)
stars; let’s call this the “näıve cosmology.” However, J. de Cheseaux in 1744, and
more famously Heinrich Olbers in 1826, noticed that this seemingly straightforward
extrapolation of the observed celestial sphere leads to predictions so grossly incorrect
that any naked-eye glance the night sky can rule them out.

We wish to find the brightness of the night sky in the näıve cosmology. The total,
wavelength-integrated surface brightness (intensity, or flux per unit angular area Ω)
is I = dF/dΩ = dE/dAdtdΩ. Radiation transfer tells us that as light propagates
along some sightline path s, the intensity changes as

dI

ds
= −nabsσabsI + q (1)

where any sources have luminosity density per unit solid angle q = dE/dV dtdΩ, and
any absorbing medium has an absorber number density nabs and the cross section
σabs of a single absorber, so that the absorption mean free path ℓmpf = 1/nabsσabs.
Note that in this näıve universe (but not in ours!) we ignore expansion, redshifting,
and time dilation.

(a) [1 point] To get a feel for eq. (1), consider various limits.

(i) First, if light propagates in a region where there are no sources and no ab-
sorbers, then q = 0 = nabs. This gives I(s) constant along the line of sight: the
“conservation of surface brightness.” Explain this physically, and why surface
brightness does not obey the inverse square law.

(ii) Now consider a source-free sightline of length d with a constant density of
absorbers. Find the resulting I(d) in terms of the initial intensity I(0), and
interpret your result physically.

(iii) Now consider a sightline of length d in which there are no absorbers, and no
initial luminosity I(0) = 0 = nabs, but there is a uniform distribution of sources
q. Find the resulting I(d) and interpret your result physically.

(iv) Finally, consider a sightline of length d in which there is no initial luminosity
I(0) = 0, but there is a uniform distribution of sources q and of absorbers nabs.
Find the resulting I(d) and interpret your result physically.

(b) [1 point] In the näıve cosmology, consider a case in which there is a uniform
distribution of stars like the sun, so q = L⊙n⋆/4π, with n⋆ the number density
of stars. Assume nabs = 0. Use the results from part (a) to find an expression
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for the (uniform) sky brightness I(d → ∞) in such a universe. Interpret your
result; what is the physical reason for your very unphysical answer?

(c) [1 point] Your answer for part (b) is too simple even for the näıve cosmology,
since even in the absence of interstellar matter, the stars themselves can absorb
light. Thus nabs = n⋆, and the cross section σ is the geometric cross section of
a star with radius R = R⊙. Use the results from part (a) to find the I(d → ∞)
in such a universe. You should find your answer is independent of n⋆.

(d) [1 point] To interpret your result from part (c), it is useful to compare with
the surface brightness I⊙ of the sun. To find this, note that the material at the
sun’s surface emits isotropically and thus equally in every patch of solid angle
dΩ = sin θdθdφ. Note also the solar flux F⊙ is the component of the emission
that is in the outward radial direction; taking this as the ẑ direction at the point
of emission, this means that F⊙ = I⊙

∫

θ>0 cos θ dΩ, where the outward directions
have θ ∈ [0, π/2]. Use this to find I⊙ in terms of F⊙ and then in terms of L⊙

and R⊙. Finally, express your answer to part (c) in terms of I⊙.

Interpret your result physically. What physically leads to Olber’s paradox in
the näıve universe? What effect(s) solve the paradox in a big-bang universe?
Comment on the cosmological information encoded in the seemingly simple fact
that the night sky is dark.

2. [1 point] Newtonian Escape. In our usual Newtonian cosmology, find the escape
speed vesc for a test particle at an arbitrary distance R from some arbitrary cosmic
point, enclosing a mass M(R). Find the ratio of the escape speed to the Hubble speed
vH ; your result should be independent of R. Interpret your result physically, and be
sure to discuss the three cases vesc/vH > 1, < 1, and = 1.

3. The Robertson-Walker Metric. Different people adopt different conventions for writing
down the RW metric, not to mention different coordinate systems. This exercise is
to make you familiar with how to shift among them.

(a) [1 point] The form I mostly use is more or less that of Peebles,

ds2 = dt2 − a(t)2
(

dr2

1 − κr2/R2
+ r2dθ2 + r2 sin2 θdφ2

)

(2)

Peacock and Kolb & Turner write this form as

ds2 = dt2 −R(t)2
(

du2

1 − κu2
+ u2dθ2 + u2 sin2 θdφ2

)

(3)

Note that throughout, I am freely using units where c = 1.

Show how to go between these metrics: What is the relationship between a and
R; what are their units? What is the relationship between r and u; what are
their units? For the three values of κ, what are the range of possible values of
r? of u?

(b) [1 point] Peacock’s preferred form for RW is

ds2 = dt2 −R(t)2
[

dχ2 + Sκ(χ)2dθ2 + Sκ(χ)2 sin2 θdφ2
]

(4)
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show how to go between χ and r, and verify the functional forms

S−1(χ) = sinh χ (5)

S0(χ) = χ (6)

S+1(χ) = sin χ (7)

Over what values does χ run for each case?

(c) [1 point] Note that for κ = +1, χ ∈ (0, π). For the case of a 2-D sphere
embedded in 3-D, our spatial coordinates become θ and r or u or χ. In this
case, draw a sketch showing the r, θ, and χ coordinates. Use the sketch to
illustrate the physical significance of the regions with χ = 0, π/2, π. Explain the
problem/subtlety with the r (or u) coordinate in case of κ = +1.

Go on to calculate the comoving spatial volume of the universe for κ = +1, and
show it to be V3 = 2π2R3.

Finally, what is the comoving spatial volume for universes with κ = 0 or κ = −1?

4. Horizons. As discussed in class, particle horizons play a key role in cosmology.

(a) [1 point] Show that the comoving distance dhoriz traversed by a photon from
the beginning (t = 0, r = r1) until (t0, r = 0) is given by

dhoriz =

∫

r

0

√
grrdr =

∫

t0

0

dt

a(t)
= η(t0) (8)

Briefly explain why it is sensible to use this distance to define the particle horizon.

(b) [1 point] Find expressions for dhoriz(t) in a matter-dominated and in radiation-
dominated universe. In each case, what is the behavior of dhoriz as t → 0?
Interpret this result physically, and suggest why one might näıvely have ex-
pected the opposite result. Comment on the relevance to the cosmic microwave
background.

(c) [1 point] In addition to a particle horizon, it is sometimes useful to define a
cosmic event horizon, via

devent =

∫

∞

t0

dt

a(t)
(9)

Interpret the physical significance of devent. For matter- and radiation-dominated
universe, find devent in the limit t → ∞, and comment.

Finally, for a universe (like ours) that is Λ-dominated, find devent in the limit
t → ∞, and comment on the (far) future of observational cosmology.

(d) [1 bonus point] For a closed universe containing only matter, show that a
photon born in the big bang can circumnavigate the universe and arrive back at
its starting point just at the big crunch.

5. Conformal Time. [1 point] Just as different spatial variables are useful in different
circumstances, it is sometimes useful to introduce a new time variable, the confor-
mal time η defined by dη = dt/a(t). Find a(η) and η(a) for the cases of universes
dominated by matter, by radiation, and by Λ.


