
Astronomy 596/496 PC Spring 2010
Problem Set #4

Due in class: Friday, March 19
Total points: 10+2

Throughout this problem set, whenever a cosmological parameters need to be chosen,
we will adopt the concordance cosmology, i.e., a flat Ωm,0 = 0.3, ΩΛ,0 = 0.7 universe with
η = 6 × 10−10.

ASTR496PC Students: You may drop choose to drop all of any numbered problem (i.e.,
all of its sub-parts if it has them).

1. Redshift Evolution in Real Time as a Probe of Cosmic Expansion History. In class we
showed that redshifts are related to the cosmic scale factor at photon emission and
observation via

z =
a(tobs)

a(tem)
− 1 (1)

where aobs = 1 for present-epoch observations of interest to us. One usually thinks of
the redshift of an object at fixed comoving distance r as a fixed measure equivalent to
r, and/or a fixed measure of the emission epoch. While this is true for most practical
purposes, it is not strictly correct. Since the 1960’s work of Alan Sandage1 and
UIUC’s own George McVittie2 , it has been known that the time change of redshifts
pose a potentially powerful test of cosmology generally and of cosmic acceleration
(and hence dark energy) particularly.

(a) [1 point] Starting with eq. (1), derive the McVittie equation for the observed
evolution of redshift for an object

dz

dtobs

= (1 + z)H(tobs) − H(tem) = (1 + z)

[

1 −
1

1 + z

H(tem)

H0

]

1

tH,0
(2)

where H(t) is the expansion rate evaluated at (and observed at) time t.

(b) [1 point] Show that dz/dtobs = 0 for an “coasting” universe which has no
acceleration, i.e., an expansion with ä = 0. This implies that dz/dtobs is a probe
of cosmic acceleration/deceleration.

For a matter-only universe show that dz/dtobs < 0, while for a Λ-dominated
universe show that dz/dtobs > 0. Interpret these results physically.

(c) [1 point] If we monitor the spectrum of an object at fixed comoving distance
over a time δt, then the wavelength λobs = (1+z)λem of spectral feature will drift
by a fractional amount δλobs/λobs = λem/λobs dz/dtobs δt = (1+z)−1dz/dtobs δt,
equivalent to a Doppler velocity drift of δv = cδz/(1 + z).

1Sandage, A. 1962, ApJ, 136, 319. This paper also calculates the time evolution of the luminosity of a
source at fixed comoving distance. I leave it to the reader to see why this would be an even more difficult
thing to measure than the time-change of redshift.

2McVittie, G. C. 1962 ApJ, 136, 334. Somewhat oddly, this is a separately-authored appendix to the
Sandage (1962) paper, in which McVittie extends Sandage’s analysis for general combinations of Ωm and
ΩΛ.
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Sensitive spectroscopic techniques have been developed to find planets via the
small change in the Dopper shift of the parent star due to the gravitational
influence of the planet. Current methods can detect velocity changes down to
about δvobs ∼ 1 m/s over timescales as long as δt ∼ 10 yr.

Using the above results, find the Doppler velocity drift of a z = 3 object over
a timescale of δt = 10 yr, in a Ωm = 0.3 and ΩΛ = 0.7 cosmology. Can this be
observed with current techniques? What complications might make this mea-
surement and its interpretation difficult? (Hint: real objects at z = 3 are not
point sources, and do have internal motions.) How might some of these difficul-
ties be overcome?

Such an observational campaign is sometimes known as the Sandage-Loeb3 test,
which has been known of for decades (thanks to Sandage and McVittie) but has
received a revival of accelerated interest recently4.

(d) [1 bonus point] Imagine it is (or becomes) possible to make reliable measure-
ments of redshift drifts over a substantial redshift range, say z = 0.5−3. Explain
how such measurements could be used to test cosmology in general, and dark
energy models in particular.

2. Cosmic Thermal Photodissociation.

(a) [1 bonus point] In several cosmic situations we will want to know the number
density of thermal photons (or other relativistic particles) with energies exceed-
ing some scale ǫ which lies above the particles’ temperature T . That is, we are
interested in the number density of photons in the “high-energy tail.” Show
that, for ǫ ≫ T , the number density of particles with energies above ǫ is

nrel(> ǫ) ≈
g

2π2
ǫ2Te−ǫ/T (3)

Hint: in the integral over phase space, it may be useful to change variables from
p to q = p − ǫ.

Finally, eq. (3) is written in units where h̄ = c = kBoltz = 1. Revise eq. (3),
replacing these factors as needed to restore the correct observable units for n.

(b) [1 point] We typically will want to use eq. (3) to compute the number of high-
energy, dissociating photons per baryon. In particular, it is of interest to find
when nrel(> ǫ) drops below the baryon number density nb. Find an expression
which shows how the temperature at which this occurs, Tdis, is related to the
energy scale ǫ and the baryon-to-photon ratio η.

Give an approximate expression for Tdis, ignoring logarithmic corrections (i.e.,
ignore terms like lnT ).

Finally, consider the case in which ǫ is the energy needed for photons to break
up, or “dissociate,” a bound state of baryons. Interpret the physical significance
Tdis and explain why it is not just ǫ.

3Loeb, A. 1998, ApJL, 499, L111
4See, e.g., Lake, K. 1981, ApJ, 247, 17; Lake, K. 2007, PRD, 76, 063508; Balbi, A., & Quercellini, C.

2007, MNRAS, 382, 1623; Uzan, J.-P., Bernardeau, F., & Mellier, Y. 2008, PRD, 77, 021301;
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3. The Epoch of Recombination.

(a) [1 point] Estimate the temperature of recombination, using your result from
question 2b above. Be sure to explain your choice of energy scale ǫ. Go on to
estimate the redshift zrec of recombination.

(b) [1 point] To make a more refined estimate, calculate the redshift zrec of recom-
bination, using the Saha equation. Take as the condition for recombination that
only a fraction Xe,rec = 10% of the electrons remain free.

Compare your result to the estimate from part 3(a), and comment.

(c) [1 point] Show how your result from part (b) would change if you had de-
fined recombination by free electron fractions of Xe,rec = 50%, or Xe,rec = 1%.
Comment on the result and give your estimate of the quantitative uncertainty
or “fuzziness” ∆zrec in the recombination redshift due to this arbitrariness in
assigning a unique instant to this continuous (but rapid) event.

4. Angular Diameter of the Recombination Horizon.

(a) [1 point] Find an expression for the angular diameter distance to an object
whose redshift z falls within the matter-dominated epoch of a concordance cos-
mology. Evaluate the result numerically for z = zrec.

Then find an expression for the physical (i.e., not comoving) size of the particle
horizon for an instant whose redshift z falls within the matter-dominated epoch
of a concordance cosmology. Evaluate the result numerically for z = zrec.

(b) [1 point] Given the results for parts (a) and (b), calculate an expression for
the angular diameter θhor,rec of the horizon at recombination in terms of zrec.
Evaluate your result numerically and express it in degrees.

Finally, interpret your result physically: on the basis of your calculations (i.e.,
don’t worry yet about inflation) how would you understand CMB temperature
differences (or sameness) observed on angular scales smaller than θhor,rec? larger
than θhor,rec?

5. [1 point] Olber’s Paradox Revisited. In PS2 you found the resolution to Olber’s
paradox as it concerns starlight. But unbeknownst to Olber, there is an entirely
different population of cosmic photons, namely the thermal CMB.

Find the temperature Tls of the CMB at last scattering (which you can take to be
the same as recombination), and from this the expression for surface brightness Icmb

as seen by an observer then. The CMB encounters essentially no absorption after
last scattering, and so in a static universe the surface brightness would be conserved.
However, in an expanding universe the surface brightness of an object at redshift z
decreases as Iobs(z) = Iem/(1 + z)4. Explain this (1 + z)4 factor either by considering
the evolution of the CMB temperature, or by generally considering the evolution of
the ingredients of surface brightness (angular area and flux), or both.

Finally, find the surface brightness of the CMB today, compare it to the surface
brightness of the Sun (which you found in PS2). Comment on how your results
modify our understanding of Olber’s paradox and its resolution. Also comment on
the future CMB appearance in an increasingly dark-energy-dominated universe.


