
Astronomy 596/496 PC Spring 2010
Problem Set #6

Due in class: Monday, April 12
Total points: 10+2

ASTR496PC Students: You may drop choose to drop all of any numbered problem (i.e.,
all of its sub-parts if it has them). You may also choose to substitute Problem 6 for one
of the other numbered problems. That is, you are responsible for 5 numbered problems, of
which one may be Problem 6.

1. Observational Requirements for Inflation: Cosmic e-foldings.

(a) [1 point] Imagine that we have information which tells us that the universe
pass through an cosmic epoch in either the radiation or matter eras. It follows
that the universe didn’t recollapse or go to zero density soon thereafter, and that
we have nearly flat universe today, so that the curvature then must have been
small. Given some epoch z, and the current limits ‖Ωκ,0‖ ≡ ‖Ω0 − 1‖ ≤ 0.01,
find and expression for the limits on the curvature parameter ‖Ωκ‖ ≡ ‖Ω(z)−1‖.
Note that the results are different depending on whether the epoch is matter- or
radiation-dominated.

One way to state the flatness problem is that “generically” one expects the
curvature term comparable to the others: ‖Ω − 1‖ ∼ 1, while you have found
‖Ω−1‖ ≪ 1. Use your result to deduce the required number Nmin of inflationary
e-foldings prior to the epoch z in order to leave it as flat as you have required.
To do this, assume that prior to inflation, the generic condition ‖Ω − 1‖ ∼ 1
held. Then you can calculate how much the curvature would need to be inflated
to meet some observed bound on ‖Ω − 1‖.

(b) [1 point] Apply your result from (a) to find Nmin as implied by these cosmic
epochs: recombination, BBN, the “Fermilab era” when T ∼ ETevatron = 1 TeV,
the GUT era ∼ 1015 GeV, and the Planck epoch.

(c) [1 bonus point] (Following Liddle & Lyth 3.5) If the universe underwent a
GUT transition T ∼ 1015 GeV), it is expected that one magnetic monopole (m ∼
1015 GeV) was created per Hubble volume. In the absence of inflation, compute
the relic mass density of monopoles today; you should get an uncomfortably large
number. Using the limit ΩMonopole,0 <∼ 10−6 (Parker bound), compute require
the number of e-foldings of inflation needed to respect this bound. Compare
your result to those above, and comment.

2. Scalar Field Dynamics. A classical and spatially homogeneous scalar field φ which
only interacts with itself (via a potential V ) and with gravity has an equation of
motion in a FRW universe given by

φ̈ + 3Hφ̇ + dV/dφ = 0 (1)

(a) [1 point] In a non-expanding universe, show that the equation of motion implies
that ρφ = φ̇2/2 + V (φ) is a constant.

Find an expression for ρ̇φ in an expanding universe, and interpret it physically.
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(b) [1 point] Show that if the kinetic term dominates the φ energy density (i.e., if
V is negligible), ρφ ∝ a−6. Also find the value of wφ in this case.

If the kinetic term in ρφ not only dominates V but also the rest of the energy
density in the universe (“kination”), go on to find the time evolution φ(t).

It is not known if the universe ever underwent such a phase. Comment on why
such a phase is unsuitable for inflation.

3. Slow-Roll Conditions.

(a) [1 point] Show that the slow-roll requirements that φ̇2/2 ≪ V (φ) and φ̈ ≪ 3Hφ̇
are equivalent to the statements that
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Pl

2

(

V ′

V

)2

≪ 1 (2)

‖ η(φ) ‖ ≡ m2
Pl

∥

∥

∥

∥

V ′′

V

∥

∥

∥

∥

≪ 1 (3)

where η here is neither the baryon-to-photon ratio nor conformal time! Also, here
and throughout, we follow Liddle & Lyth in using the “reduced Planck mass”
mPl = MPl/

√
8π =

√

h̄c/8πG, so that, e.g., Friedmann reads H2 = ρ/3m2
Pl.

(b) [1 point] Show that if both ǫ and η are strict constants, independent of φ, this
uniquely specifies the inflation potential to be of the form

V (φ) = V0e
φ/µ (4)

Find the value of the energy scale µ in terms of ǫ, η, and physical constants.

4. A Quartic Potential. (Following Liddle & Lyth 3.7). Consider the case where the
scalar field has a quartic potential: V (φ) = λφ4, with λ a dimensionless constant.

(a) [1 point] In the slow-roll approximation, with initial value φ = φi and a = ai

at t = ti show that the field decays exponentially for t > ti:

φ(t) = φi exp



−
√

32λm2
Pl

6
(t − ti)



 (5)

Use this solution to find ρφ(t), and comment on the implications of your result.

(b) [1 point] Go on to show that, still within the slow-roll approximation, that the
scale factor follows a double exponential form

a(t) = ai exp
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(c) [1 point] Show that initially, i.e., for small t− ti, the expansion is exponential.
Calculate the time constant ξ (from a ∼ eξt) and demonstrate that it equals the
(slow-roll) Hubble parameter during inflation.

(d) [1 bonus point] Find the value(s) of φ when the slow-roll conditions first break
down. Do they break down at the same place?
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5. Inflation and Dark Energy. Inflation and the quintessence model for dark energy
share many similarities, but often the theories are discussed using different language:
inflation focusses on the slow-roll condition and parameters ǫ and η, while dark energy
focusses on the equation-of-state parameter w. A few weeks ago, an elegant paper
(Ilic, Kunz, Liddle, & Frieman 2010, arXiv:1002.4196) spelled out the connection
between these two parameterizations.

(a) [1 bonus point] Show that, when the slow-roll conditions are satisfied, then

1 + w =
2

3
ǫ (7)

valid to first order in the small slow-roll parameters.

(b) [1 point] Use eq. (7) to infer that the equation of state of a slowly rolling
inflationary period is similar to that of a universe dominated by dark energy.

6. The Planck Mass. Note: only ASTR496PC can receive credit for this problem by
swapping it for one of the other assigned problems. ASTR 596PC students will not

receive credit for this problem.

(a) [1 point] In (special) relativity, a particle of mass m has a characteristic energy
scale, mc2, associated with it, and an characteristic momentum scale mc. In
quantum mechanics there is a natural length scale associated with a particle of
momentum p, namely the de Broglie wavelength λ ∼ h̄/p. One thus arrives at
a lengthscale associated with relativistic quantum effects, namely the Compton
wavelength λc = h̄/mc. At length scales at or smaller than this, one expects
relativistic quantum effects to be important, and in fact this is how we calculated
the range of forces mediated by massive bosons (e.g., the weak force).

In (classical) General Relativity, there is a natural length scale associated with a
body of mass m, namely rgr ∼ Gm/c2 (this is half of the so-called Schwarzschild
radius) . For the known fundamental particles, it turns out that rSch ≪ λc,
which means that one may ignore General Relativity when describing them.
However, if a particle had a mass m such that rSch = λc, one would need a
full General Relativistic quantum theory to describe the particle–i.e., quantum

gravity. This mass scale is known as the Planck mass MPl. Calculate MPl and
give its value in energy units of GeV. Also calculate the associated Planck time
and Planck length. These correspond to the temperature, age, and size of the
Universe before which quantum gravity effects must be included, and thus mark
the extreme edge of applicability of current (non-quantum-gravity) theories.

(b) [1 point] Verify that in natural units (h̄ = c = kBoltz = 1), a radiation-
dominated universe has an expansion rate H ∼ T 2/MPl.


