
Astronomy 596 PC Spring 2006
Problem Set #7: The Final Frontier

Due in the instructor’s mailbox (or hands!) on or before: Thursday, May 13, noon
Total points: 10+2

1. Peculiar Velocities: Linear Analysis.

(a) [1 point] Consider the linearized analysis of perturbations in a non-expanding
homogeneous Newtonian fluid at rest. Verify that the linearized equations can
be combined to give the wave equation

∂2
t δ − c2s∇

2δ = 4πGρ0δ (1)

You do should only use the linearized fluid equations and not already assume
plane wave solutions.

(b) [1 bonus point] Now consider the velocity perturbation ~u, still in a non-
expanding fluid. We may decompose this vector into two part ~u = ~u‖ + ~u⊥,
where ~u‖ has nonzero divergence and zero curl, and ~u⊥ has zero divergence and
nonzero curl. Show that the curl of the velocity perturbation (sometimes called
the vorticity ~ω = ∇ × ~u = ∇ × ~u⊥) is constant in time, and use this to argue
that the “rotational” velocity components with ~k · ~u = 0 are constant as well.
Comment on the physical reason for this (hint: what is the nature of the forces
involved?).

(c) [1 point] Still in a non-expanding fluid, focus on the curl-free velocity compo-
nent; call this ~u‖. Since this field has no curl, it can be written as a gradient
~u‖ = ∇ψ, where ψ is known as the “velocity potential.” Use the linearized fluid
equations to show that ψ also obeys ths same wave equation as that governing
δ. What do you infer about the behavior of ~u‖? Interpret your result physically.

What is the behavior of u‖ in the unstable regime?

(d) [1 bonus point] Now consider cosmological perturbations in an expanding
universe, and focus on the velocity. Making the same velocity decomposition,
show that the curl of the velocity perturbation (sometimes called the vorticity
~ω = ∇× ~u = ∇× ~u⊥) evolves with time as

ω ∝ a−2 (2)

and thus the vorticity (and ~u⊥) redshifts away.

(e) [1 point] Now consider only the curl-free peculiar velocity component; for
brevity just call it ~v. Show that we can combine the linearized continuity equa-
tion, and the fact that (for unstable modes) δ evolves with the linear growth
factor δ(t) = D(t)δ0, to infer

1

a
∇ · ~v = −

Ḋ

D
δ ≡ −f(t)H(t) δ (3)
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where the dimensionless factor

f(t) =
Ḋ/D

ȧ/a
(4)

encodes the relative rates of perturbation growth versus the growth of the scale
factor. What is f(t) for a matter-dominated universe?

Go on to use the linearized Gauss’ theorem for the peculiar gravitational accel-
eration

1

a
∇ · ~g = −4πGρδ (5)

to infer that

~v =
2f

3HΩm
~g (6)

Interpret this result physically.

(f) [1 point] In light of eq. (6), consider the observed CMB dipole. What is the
significance of its magnitude and direction? Given the magnitude vpec ∼ 600
km/s, what is our peculiar acceleration with respect to the CMB frame, both in
cm/s2 and Mpc/Gyr2? Comment on the result.

Describe an observational strategy to relate our peculiar velocity to the observed
local matter distribution (i.e., nearby clusters and superclusters).

2. Lyman-α Forest and Reionization of the Intergalactic Medium.

(a) [1 point] Show that, in a matter-dominated universe, the optical depth for Lyα
absorption (with cross section σ ∼ 8 × 10−18 cm2) out to some redshift z is

τHI(z) =
2

3Ω
1/2
m

σnHI
c

H0
(1 + z)−3/2 (7)

where nHI is the (assumed constant) comoving density of neutral hydrogen.

(b) [1 point] In reality, τHI varies wildly over every line of sight towards a quasar,
due to the Lyα forest. This of course indicates that the real universe has a
lumpy distribution of neutral hydrogen. Nevertheless, if we note that about half
(or, say, 1/e) of a typical high-redshift quasar’s flux is carved out by the forest,
we conclude that a sort of “ensemble average” optical depth is something like
〈τobs〉 ∼ 1 at redshift z ∼ 3. Use this value, and your result from part (a) to find
ΩHI(z).

Compare this with the cosmic baryon density to find the mean IGM neutral
hydrogen fraction 1 −Xe = nH/nbaryon as a function of z.

(c) [1 point] At z = 3 you should find 1 −Xe ∼ 10−6 or so. Use your result and
the Saha equation to estimate the temperature TIGM needed to keep the IGM in
equilibrium at this ionization. Express your answer in eV.

Go on to calculate the average thermal energy per baryon, and the comoving
cosmic ionizing energy density in eV/cm−3. This gives a feel for the required
ionizing energy injection to reionize the universe. Comment on the result.
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(d) [1 point] A massive star destined to become a supernova emits copious amounts
of ionizing radiation. Take a typical massive star to have M = 20M⊙, emits
ionizing photons at a rate Qioniz ≃ 1049 s−1 over a τ ∼ 106 yr lifetime. For
simplicity, take these all to be at 13.6 eV.

Given this, and your results from the previous question, what is the fraction of
baryons needed to go into 20M⊙ stars in order to reionize the universe. Comment
on whether this seems plausible.

3. The Cosmic Star-Formation Rate. Measuring and understanding the history of cosmic
star formation is a major topic in cosmology today. As discussed in class, the cosmic
star formation rate ρ̇⋆(z) is now fairly well-determined out to redshifts z ∼ 2.

(a) [1 point] A famous recent evaluation of the cosmic star formation rate appears
in Hopkins & Beacom (2006, ApJ 451, 142), linked in the final lecture webpage.
Consult Hopkins & Beacom’s Figure 1 and the surrounding discussion, and find
the value ρ̇⋆(0) of the cosmic star-formation rate today, i.e., at z = 0. To see if
this makes sense, consider the quantity ψ̄ = ρ̇⋆(0)/ngal, where ngal is a measure
of the number density of galaxies at z = 0, for example as you found in Problem
Set 1.

Explain why ψ̄ should be a measure of the average star-formation rate of a typical
galaxy today.

Then evaluate ψ̄ using the Hopkins & Beacom value for ρ̇⋆(0), and ngal you found
in Problem Set 1 (or from class notes). Compare your result to the Milky Way
star-formation rate ψMW ≃ 1 M⊙/yr can comment.

(b) [1 point] Out to redshift z ∼ 1, the cosmic star-formation rate grows roughly as
ρ̇⋆ ∝ (1+z)3, so that ρ̇⋆(z) = (1+z)3 ρ̇⋆(0). Assuming this dependence, integrate
this rate over cosmic time, i.e., find ρsf =

∫ t0
t(z=1) ρ̇⋆ dt =

∫ 1
a(z=1) ρ̇⋆ da/(aH), using

the expansion rate for a matter-dominated universe with Ωm = 0.3. Also find
Ωsf . What physically should ρsf and Ωsf measure?

Compare your results with the baryon density parameter Ωbaryon, and the density
parameter for stellar luminous matter Ωlum found in Problem Set 1 and in class
notes. Comment on the results.


