Astro 596/496 PC Lecture 11 Feb. 12, 2010

Announcements:

- PF2 was due at noon
- PS2 out, due next Friday in class first Problems 1 & 2 wordy but fun and not difficult

Last time:

Friedmann-Lemaître-Robertson-Walker (FLRW) metric

$$ds^{2} = dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - \kappa r^{2}/R^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right)$$

Q: parameters? variables?

Q: physical significance of ds?

Today:

 \vdash

• lifestyles in a relativistic FLRW universe

Worked Example: Photon Propagation

photon path: radial null trajectory ds = 0 (Fermat) \star emitted at $r_{\rm em}$, $t_{\rm em}$ \star observed at $r_{\rm obs} = 0$, $t_{\rm obs}$

for FOs at r_{em} and $r_{obs} = 0$, any t_{em} and t_{obs} pairs have

Since RHS is time-independent Q: why? then any two pairs of emission/observation events between comoving points $r \rightarrow 0$ must have

$$\int_{t_{\rm em,1}}^{t_{\rm obs,1}} \frac{dt}{a(t)} = \int_{t_{\rm em,2}}^{t_{\rm obs,2}} \frac{dt}{a(t)}$$
(1)

Ν

consider two sequential emission events, lagged by $\delta t_{\rm em}$ subsequently seen as sequential observation events with δt_{obs}

time-independence of propagation integral means

$$\int_{t_{\rm em}}^{t_{\rm obs}} \frac{dt}{a(t)} = \int_{t_{\rm em}+\delta t_{\rm em}}^{t_{\rm obs}+\delta t_{\rm obs}} \frac{dt}{a(t)}$$

rearranging...

$$\int_{t_{\rm em}}^{t_{\rm em}+\delta t_{\rm em}} \frac{dt}{a(t)} = \int_{t_{\rm obs}}^{t_{\rm obs}+\delta t_{\rm obs}} \frac{dt}{a(t)}$$

if δt small (Q: compared to what?)
then $\delta t_{\rm em}/a(t_{\rm em}) = \delta t_{\rm obs}/a(t_{\rm obs})$ and so
$$\frac{\delta t_{\rm obs}}{\delta t_{\rm em}} = \frac{a(t_{\rm obs})}{a(t_{\rm em})}$$

ω

if

Observational implications:

4

```
★ for any pairs of photons

\frac{\delta t_{\text{obs}}}{\delta t_{\text{em}}} = \frac{a(t_{\text{obs}})}{a(t_{\text{em}})} = \frac{1 + z_{\text{em}}}{1 + z_{\text{obs}}}
and since a(t_{\text{obs}}) > a(t_{\text{em}})

\rightarrow \delta t_{\text{obs}} > \delta t_{\text{em}}

\rightarrow \text{time dilation!}
```

cosmic time dilation recently observed! Q: how would effect show up? Q: why non-trivial to observationally confirm? www: cosmic time dilation evidence

Cosmological Redshifts Revisited

consider light with wavelength λ , frequency $f = c/\lambda$ FO emits wavecrests with period $\delta t_{\rm em} = 1/f = \lambda/c$

 \star if photon pairs are wavecrests, then

$$\frac{\delta t_{\rm obs}}{\delta t_{\rm em}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm em}}$$

and thus

СЛ

$$\frac{\lambda_{\text{obs}}}{\lambda_{\text{em}}} = \frac{a(t_{\text{obs}})}{a(t_{\text{em}})} = \frac{1+z_{\text{em}}}{1+z_{\text{obs}}}$$

 $\rightarrow \lambda_{obs} > \lambda_{em} \\ \rightarrow \text{ cosmic redshifting!}$

Note: one-to-one relationships

redshift $z \leftrightarrow$ emission time $t_{em} \leftrightarrow$ comov. dist. at emission r_{em} any/all of these denote a cosmic **epoch**

Cosmic Causality

Recall special relativity (Minkowski space) $ds^2 = dt^2 - dx^2 - dy^2 - dz^2$ light: $ds = 0 \rightarrow \text{cone } dt^2 = dx^2 + dy^2 + dz^2$ *diagram: spacetime sketch*

Now RW metric: $ds^2 = dt^2 - a^2 d\ell_{com}^2$ introduce new time variable η : **conformal time** defined by $d\eta = dt/a(t)$ (see PS2)

 $ds^2 = a(\eta)^2 \left(d\eta^2 - d\ell_{com}^2 \right) = a(\eta)^2 \times$ (Minkowski structure) diagram: spacetime sketch- η vs ℓ_{com}

σ

For a flat universe ($\kappa = 0$), it's even better:

$$ds^2 = a(\eta)^2 \left(d\eta^2 - dr_{\rm com}^2 \right) = a(\eta)^2 \times \text{(exact Minkowski form)}$$

In either case \rightarrow spacelike, timelike, lightlike divisions same and in $(\eta, \ell_{\text{com}})$ space:

light cone structure the same \Rightarrow *causal structure the same*!

Namely:

- a spacetime point can only be influenced by events in past light cone
- a spactime point can only influence events in future light cone

So far: like Minkowski

✓ New cosmic twist: finite cosmic age
 Q: implications for causality?

Causality: Particle Horizon

past light cone at t defined by photon propagation over cosmic history:

$$\int_{t_{\rm em}=0}^{t_{\rm obs}=t_0} \frac{d\tau}{a(\tau)} = \int_0^{r_{\rm em}} \frac{dr}{\sqrt{1 - \kappa r^2/R^2}} \equiv d_{\rm hor,com}(t_0)$$

where $d_{\rm hor,com}$ is comoving distance photon has traveled since big bang

if $d_{\text{hor,com}} = \int_0^t d\tau / a(\tau)$ converges then only a finite part of U has affected us $\rightarrow d_{\text{hor}}$ defines *causal boundary* \rightarrow "particle horizon"

Q: physical implications of a particle horizon?

Q: role of finite age?

 ∞

Q: sanity check–simple limiting case with obvious result?

Particle Horizons: Implications

our view of the Universe:

diagram: our spacetime, our particle horizon, our worldline
* astronomical info comes from events along past light cone
* geological info comes from past world line

- if particle horizon finite (i.e., $\neq \infty$), then $d_{\text{horiz,com}}$:
- gives comoving size of observable universe
- encloses region which can communicate over cosmic time \rightarrow causally connected region
- sets "zone of influence" over which particles can "notice" and/or affect each each other and local physical processes can "organize" themselves e.g., shouldn't see bound structures large than particle horizon!
- 9

```
So is d_{hor} finite?
depends on details of a(t) evolution as t \rightarrow 0:
behavior near singularity crucial
```

will see in PS2:

```
    ▶ for matter, radiation domination: d<sub>hor</sub> finite
and d<sub>hor</sub>→0 for t→0
Q: implications for CMB?
Hint: observed T<sub>CMB</sub>(θ, φ) isotropic to 5th decimal place...
```

will see in coming weeksinflation (if real!) adds twist!

7th Inning Stretch ...a good time for questions...

Cosmic Distance Measures

More examples of how spacetime properties impose relationships among observables

Warmup: Newtonian cosmology another sanity check, limiting case *Q: validity range?*

Consider Newtonian cosmo:

- given observed z, what is distance d_{Newt} ?
- Q: good for which z?
- *Q*: complications in full FLRW universe?

"Newtonian Distance"

Newtonian cosmology:

 small speeds, weak gravity ignore curvature

Hubble's Law: $H_0 d_{Newt} \equiv v \simeq cz$ applicability: $z \ll 1$ solve:

$$d_{\mathsf{Newt}} = z \frac{c}{H_0} = z \, d_H$$

In full FLRW, "distance" not unique answer depends on

- $\frac{1}{\omega}$ what you measure
 - how you measure it