
Astro 596/496 PC

Lecture 12

Feb. 15, 2010

Announcements:

• PS2 due Friday in class

first Problems 1 & 2 wordy but fun and not difficult

today’s Director’s Cut relevant to Problem 1

Last time: FLRW lifestyles

⊲ cosmic time dilation Q: what’s that?

how big for a SN at z = 1?

⊲ cosmic causality

⊲ particle horizon Q: what’s that? why important?

Today: last day of boot camp!

• cosmic distance measures

Q: disance d(z) in Newtonian cosmology? validity range?
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“Newtonian Distance”

Newtonian cosmology:

• small speeds, weak gravity

ignore curvature

Hubble’s Law: H0dNewt ≡ v ≃ cz

applicability: z ≪ 1

solve:

dNewt = z
c

H0
= z dH
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Distances and Relativity

Basic but crucial distinction, important to remember:

In Newtonian/pre-Relativity physics: space is absolute

• “distance” has unique, well-defined meaning:

⇒ Euclidean separation between points

• can think of as “intrinsic” to objects and points

In Special and General Relativity: space not absolute

• distance observer-dependent, not intrinsic to objects, events

• different well-defined measurements can lead to

different results for distance

In FLRW universe, “distance” not unique: answer depends on

• what you measure

• how you measure it
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Proper Distance

So far: have constructed comoving coordinates

which expand with Universe (“home” of FOs)

RW metric: encodes proper distance

i.e., physical separations as measured by metersticks/tapemeasures:

⊲ in RW frame i.e., by comoving observers=FOs

⊲ at one fixed cosmic instant t

dℓ2prop = a(t)2dℓ2com = a(t)2
(

dr2

1 − κr2/R2
+ r2dθ2 + r2 sin2 θdφ2

)

Can read off proper distances for small displacements

as measured by FOs at time t:

• dℓprop
r = a(t) dℓcom

r = a(t) dr/
√

1 − κr2/R2

• dℓprop
θ = a(t) dℓcom

θ = a(t) rdθ

• dℓprop
φ = a(t) dℓcom

φ = a(t) r sin θdφ

Q: how to find distance for finite displacements?
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for finite displacements: integrate small ones

e.g., radial distance (at t) from r = 0 to r is

ℓprop
r = a(t)ℓcom

r = a(t)
∫ r

0
dζ/

√

1 − κζ2/R2 (1)

Note: dℓprop
r /dt = ȧ ℓcom

r = H ℓprop
r exactly!

→ i.e., at a fixed cosmic time t

proper distances increase exactly according to Hubble!

Q: what does this mean for points with ℓprop
r > dH?

Q: is this a problem?

Q: how would you in practice measure ℓprop
r for large r?
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Luminosity Distance

for a point source (unresolved), observables:

1. redshift z

2. flux (apparent brightness) F

summed over all wavelengths: “bolometric”

input/assumption: “standard candle”

known (the tricky part!) rest-frame luminosity

Lem = dEem/dtem

Goal: for std candles, want to relate

observed z and F

Q: physical effects: “normal” environment?

Q: effects in cosmological setting?

Q: relevant equations? calculation strategies?

Q: sanity check(s)?
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My preferred strategy: start with observation, work back

⇒ measurement result is invariant

i.e., all agree on what detector registers

even if some observers think it’s crazy

Observation: FO with telescope, area Adet
in time interval δtobs
measures energy δǫobs

observed flux (bolometric, λ-integrated) given by

δǫobs = FobsAdetδtobs
→ Fobs is rate of energy flow per unit area

Connect to std candle emitter: Lem at (tem, rem = r)
• choose rem = 0 as center

• light “cone” (sphere) today reaches us,

has present area Asph = 4πr2

Q: energy conservation?
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Energy conservation:

summed over sphere, δEobs = FobsAsphδtobs

and so

Fobs =
δEobs/δtobs

Asph
=

δEobs/δtobs

4πr2

but expansion → δEobs/δtobs 6=Lem!

• energy redshifting δEobs = aemδEem

• time dilation δtobs = δtem/aem

⇒
δEobs

δtobs
= a2

em
δEem

δtem
= a2

emLem =
Lem

(1 + z)2

So we have

Fobs = a2
em

Lem

4πr2
=

Lem

4π(1 + z)2r2
(2)

8



Observed flux is

Fobs = a2
em

Lem

4πr2
=

Lem

4π(1 + z)2r2
(3)

identify luminosity distance via Newtonian/Euclidean result:

dL ≡

√

Lem

4πFobs
(4)

and so

dL =
r

aem
= (1 + z)r

Q: why interesting?

Q: r unmeasured–how relate to observables?

Q: sanity checks? non-expanding? small z?

Q: why is dL 6= ℓcom?

Q: why is dL > r?

Q: what if measure spectrum Fν = dF/dν?
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luminosity distance: dL = (1 + z)r

Note: relate r to emission redshift z via

trusty photon propagation eq:
∫ rem

0

dr
√

1 − κr2/R2
=

∫ tobs

tem

dt

a(t)

=

∫ aobs

aem

da

aȧ
=

∫ aobs

aem

da

a2H(a)

=
∫ zem

0

dz

H(z)

where Friedmann gives H(z)

→ r and thus dL manifestly depends on cosmology

(i.e., cosmic geometry, parameters)

⋆ dL for SN Ia → cosmic acceleration!

Note: for alt radial variable χ

dL = (1 + z)RSκ(χ)
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Extended Objects:
Angular Diameter Distance

if object resolved as extended source on sky, new observable

⋆ angular size δθ

• and as usually, redshift z

and flux (apparent bolometric brightness) F

input/assumption: “standard ruler”

known (the tricky part!) rest-frame size: diameter Dem

Goal: for std rulers, want to relate

observed z and δθ

Q: physical effects: “normal” environment?

Q: effects in cosmological setting?

Q: relevant equations? calculation strategies?

Q: sanity check(s)?
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To visualize, consider closed universe

• observer at r = 0

• a pair of radial photon on opposite edges of source

trace longitudes

diagram: sphere sketch

Invariant:

angular (longitude) separation δθ remains same

...while physical separation evolves, due to propagation

and cosmic expansion

At emission epoch, physical separation of photons

is standard ruler size Dem

but also related to δθ and r = rem via RW metric

Q: how?
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At emission epoch, standard ruler size Dem

at emission point r fixes angular separation δθ:

Dem = δℓ
prop,em
θ = aemδℓcom

θ = aemrδθ (5)

But δθ remains fixed over propagation

so today we observe

δθ =
Dem

aemr

identify angular diameter distance

via Newtonian/Euclidean result:

dA ≡
Dem

δθ
(6)

and so

dA = aemr =
r

1 + z
=

Sκ(χ)

1 + z

1
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Angular diameter distance: dA = r/(1 + z)

Q: sanity checks?

Q: why is dA < r?

Q: what if resolve at different λ?

Note:

• dA = a2
emdL = dL/(1 + z)2 different measures!

• dA also depends on cosmo (but dA/dL doesn’t!)

Q: implications for CMB fluctuations?

www: WMAP
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Director’s Cut Extras: Surface Brightness

1
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Extended Objects Part Deux:
Surface Brightness

if object is resolved, can determine

surface brightness I = flux/(angular area ∆Ω)

Q: physical effects: “normal” environment?

Q: effects in cosmological setting?

Q: relevant equations? calculation strategies?

Q: sanity check(s)?
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Newtonian/Euclidean Surface Brightness

For intuition: review Newtonian/Euclidean result

• flat space

• no redshifting, time dilation

consider an extended source, i.e., not pointline

which is resolved by your telescope

i.e., apparent angular size > point spread function

observables:

• flux F as before, but also

• angular dimensions → angular area ∆Ω

Wavelength-integrated (bolometric) surface brightness

is wavelength-integrated flux per unit soruce angular area:

Iobs =
Fobs

∆Ω
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Dependence on source distance?

• as usual, F = L/4πd2

• source sky area ∆Ω ⇒ physical area S = d2∆Ω, so

Iobs =
Fobs

∆Ω
=

L/4πd2

S/d2
=

L

4πS

Newtonian/Euclidean result independent of source distance!

“conservation of surface brightness”
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Want (bolometric) surface brightness:

Iobs =
Fobs

∆Ωobs

1. already know Fobs = a2
emLem/4πr2

2. RW metric says angular area

∆Ωobs ≃
δℓ2θ

4πr2
=

D2
em

4πa2
emr

=
Aem

4πa2
emr2

Combine:

Iobs =
a2
emLem/4πr2

4πAem/a2
emr2

= a4
em

Lem

Aem
(7)

= a4
emIem =

Iem

(1 + z)4
(8)
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Note:

• cosmic dimming ∝ (1 + z)4

• no explicit dependence on distance r:

“cons of surf brightness”

true nonrel too Q: examples?

• indep of cosmology!

useful consistency check!

Q: implications for CMB brightness?
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CMB implications:

for blackbody, Stefan-Boltzmann sez

I = σT4

consider CMB, emitted at zem

with temperature Tem

today, observe surface brightness

Iobs = (1 + zem)−4Iem = (1 + zem)−4σT4
em = σ

(

Tem

1 + zem

)4

still follows blackbody law, but with

Tobs =
Tem

1 + zem

which we have already derived by other means!
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